Recyclage des panneaux photovoltaïques en fin de vie

Etat des lieux international

RECYCLAGE DES PANNEAUX PHOTOVOLTAÏQUES EN FIN DE VIE

ETAT DES LIEUX INTERNATIONAL

RAPPORT FINAL

octobre 2012

Y. BILLARD, F. BAZIN, O. LACROIX - ENEA Consulting

Créée en 1989 à l'initiative du Ministère en charge de l'Environnement, l'association RECORD – REseau COopératif de Recherche sur les Déchets et l'Environnement – est le fruit d'une triple coopération entre industriels, pouvoirs publics et chercheurs. L'objectif principal de RECORD est le financement et la réalisation d'études et de recherches dans le domaine des déchets et des pollutions industrielles.

Les membres de ce réseau (groupes industriels et organismes publics) définissent collégialement des programmes d'études et de recherche adaptés à leurs besoins. Ces programmes sont ensuite confiés à des laboratoires publics ou privés.

Avertissement:

Les rapports ont été établis au vu des données scientifiques et techniques et d'un cadre réglementaire et normatif en vigueur à la date de l'édition des documents.

Ces documents comprennent des propositions ou des recommandations qui n'engagent que leurs auteurs. Sauf mention contraire, ils n'ont pas vocation à représenter l'avis des membres de RECORD.

✓ Pour toute reprise d'informations contenues dans ce document, l'utilisateur aura l'obligation de citer le rapport sous la référence :

RECORD, Recyclage des panneaux photovoltaïques en fin de vie. Etat des lieux international, 2012, 231 p, n°11-0912/1A

 ✓ Ces travaux ont reçu le soutien de l'ADEME (Agence de l'Environnement et de la Maîtrise de l'Energie)
 www.ademe.fr

© RECORD, 2012

Responsable scientifique: Yannaël BILLARD (ENEA Consulting)

Correspondant scientifique : Gérard ANTONINI (UTC Compiègne / RECORD)

Directrice de l'association : Bénédicte COUFFIGNAL (RECORD)

Comité de suivi :

- Swellen ARNAUD (GDF SUEZ)
- Didier BINESTI (EDF)
- Lauro CIMOLINO (SOCOTEC)
- Erwann FANGEAT (ADEME)
- Mélanie RANCE (SITA)
- Sébastien SOLEILLE (TOTAL)
- Cyrille VERONNEAU (SARP INDUSTRIES)

RESUME

Depuis le début des années 2000, la prise de conscience généralisée de l'importance du recyclage, de la part des utilisateurs autant que des producteurs, a contribué à l'essor de la filière de recyclage des modules photovoltaïques en fin de vie. Elle s'explique par l'attention croissante portée aux problématiques de conservation des ressources naturelles; les tensions d'approvisionnement croissantes sur certains métaux stratégiques; le renforcement du cadre réglementaire sur la gestion des déchets dans certains pays; et une réponse apportée aux interrogations sur le caractère renouvelable de l'énergie photovoltaïque.

Ces dix dernières années ont été marquées par des efforts de recherche conséquents qui ont permis de lever les principales barrières technologiques au recyclage des modules photovoltaïques.

Economiquement, l'activité de recyclage des modules photovoltaïques n'est pas viable à ce jour. En complément des bénéfices de la vente des matières premières recyclées, la filière s'appuie sur des sources de rémunération provenant des clients, des producteurs ou encore d'organismes en charge de la collecte. Les développeurs de technologies restent aujourd'hui frileux à l'investissement, en raison des flux de déchets encore trop faibles et peu maîtrisés, d'un marché photovoltaïque instable et d'une filière extrêmement concurrentielle. En effet, la filière de recyclage des déchets photovoltaïques devrait connaître une surcapacité *a priori* très significative à horizon 2020.

A la définition des bases de l'étude, en détaillant la composition des modules, le marché photovoltaïque actuel et futur, les volumes prévisionnels de déchets, les enjeux du recyclage des modules photovoltaïques et les possibilités de synergies avec les filières connexes de recyclage, succède l'analyse du cadre réglementaire en vigueur sur le retraitement des déchets, puis une analyse quasi-exhaustive des procédés de recyclage, des structures organisationnelles associées ainsi que des acteurs clefs. La synthèse de ces données offre un panorama mondial réaliste de l'état de la filière et des éléments clés de stratégie de développement associés à leur contexte spécifique. Le succès d'une initiative dans cette filière est directement conditionné par la capacité des acteurs à adapter leur modèle économique au contexte local, leur système administratif au cadre réglementaire local, ainsi que la taille de leur installation au volume transitoire de gisement de déchets.

MOTS CLES

Modules photovoltaïques en fin de vie, recyclage, semi-conducteur, métaux stratégiques, encapsulant, délaminage, DEEE, éco-organisme.

SUMMARY

Since the early 2000s, the general awareness surrounding the importance of recycling by the users and producers of photovoltaic modules has contributed to the emergence of the end-of-life photovoltaic modules recycling activity. This awareness can be attributed to the growing concern on natural resource conservation; the natural shortage in some strategic metals used in photovoltaic; the reinforcement of regulatory framework on waste management in some countries; and the answer given to raising questions regarding the renewability of photovoltaic.

In fact, the last ten years have been marked by significant research efforts, which have finally lifted the main technological barriers associated with the recycling of photovoltaic modules.

Economically, the activity of recycling photovoltaic modules is not yet viable today, and is instead based on sources of compensation from the client, producer or organizations in charge of the modules collection, on top of the sale of recycled materials. Technology developers are now cautious of investment because the waste stream is still too weak and poorly controlled, the photovoltaic market is unstable, and high competitiveness is indicative of a recycling overcapacity, which could be increasingly significant by 2020.

Following the definition of the study bases, the regulatory framework active in specific regions of the world is described, and an objective overview of the developing recycling sector is provided by analyzing all recycling processes, its organizational segmentation and the internal structure of relevant actors. The synthesis of this data provides a realistic guideline on the maturity of the industry and key strategies for the development of activities within this sector.

Indeed, the success of this activity will rest partly on the ability of recycling actors to adapt their business model and administrative system to local regulatory framework, and adapt the size of their installation to the transitory volume of waste streams.

KEY WORDS

End of life photovoltaic modules, recycling, semi-conductor, strategic metal, encapsulating material, delamination, WEEE, eco-organism.

SOMMAIRE

Li	iste des figures	9
Li	iste des tableaux	12
G	Blossaire	14
1.	Bases d'études	16
	1.1 Objectifs de l'étude	16
	1.2 Définition des périmètres de l'étude	16
	Périmètre technique	16
	Périmètre géographique	17
	Périmètre technologique	18
	1.3 Les technologies du photovoltaïque	18
	Tableau comparatif des technologies	18
	Composition des modules photovoltaïques	20
	Caractérisation des composants par type de technologie	26
	1.4 Eléments de marché	33
	Méthodologie d'analyse du marché photovoltaïque	33
	Marché photovoltaïque mondial	35
	Marché photovoltaïque européen	40
	Marché photovoltaïque français	43
	1.5 Les modules photovoltaïques en tant que déchets	46
	Caractérisation des déchets issus de la filière photovoltaïque	46
	Causes de fin de vie	47
	Evaluation quantitative de la fin de vie prématurée de modules	48
	1.6 Evaluation des quantités PV en fin de vie	49
	1.7 Filières de recyclage	54
	Segmentation par acteurs du recyclage des PV (collecte et recyclage)	54
	Les filières de recyclage connexes	55
2.	. Contexte réglementaire du recyclage des PV	59
	2.1 Cadre réglementaire européen	62
	DEEE (Directive sur les Déchets Electriques Et Electroniques)	62
	RoHS	68
	REACH	69
	Régulation des exportations de déchets	70
	2.2 Cadre réglementaire des Etats-Unis	71
	Resource Conservation and Recovery Act (RCRA)	71
	Spécificités de la Californie [4]	71
	2.3 Cadre réglementaire japonais [4]	72
	2.4 Cadre réglementaire chinois	72

	Regulations on Recovery Processing of Waste Electrical and Electronic Products – China W	
	2.5 Contexte réglementaire indien	
	2.6 Conclusion sur la réglementation	
3.	Etudes des procédés de recyclage et des nouvelles technologies de la filière	74
	3.1 Procédés et technologies non utilisés / abandonnés / ayant échoué	
	3.2 Les technologies de recyclage (parties d'un procédé plus complet)	
	Antec Solar GmbH – Recyclage du CdTe/CdS des cellules en couches minces	
	Calyxo – Recyclage des couches minces	
	Drinkard Metalox Inc (DMI) – Recyclage des couches minces par hydrométallurgie	
	Gdansk University – Traitement chimique des cellules cristallines	85
	InterPhases Research – Séparation des semi-conducteurs par électrochimie	88
	Jenoptik GmbH – Recyclage des modules en couches minces par laser optique [49]	90
	KRICT – Recyclage des modules cristallins avec un solvant organique	92
	Pilkington – Traitement thermique pour le délaminage de modules cristallins	95
	Primestar Solar Inc – Séparation du CdTe de son substrat	97
	Soltech/Seghers – Recyclage des modules cristallins dans un réacteur à lit fluidisé	98
	3.3 Les procédés de recyclage (ensemble complet de technologies constituant le procédé)	101
	5N Plus – Procédé de recyclage des modules CdTe et des métaux stratégiques	101
	CP Solar – Usine de recyclage des modules photovoltaïques cristallins	103
	First Solar/SGS Minerals – Procédé de recyclage des modules en couches minces 2008	106
	Loser Chemie – Procédé de recyclage de modules en couches minces	112
	Loser Chemie – Procédé de recyclage de modules cristallins	115
	Maltha – Procédé de recyclage de verre laminé adapté aux modules cristallins	117
	Poseidon – Procédé de recyclage des modules cristallins	120
	PV Recycling – Procédé de recyclage [64]	122
	Recupyl / Projet Voltarec – Procédé mécanique et de chimie verte de recyclage de modules cristallins	
	Reiling – Procédé de recyclage de verre laminé adapté aux modules cristallins [66]	
	Saperatec – Procédé de recyclage des modules en Couches Minces	
	Solar World – Procédé de recyclage automatisé des modules PVs cristallins	
	Targray – Procédé de recyclage de modules [13]	
4.		
	4.1 Les éco-organismes ou associations connexes non agréées, aspirant à organiser la filière	
	recyclage	136
	Les éco-organismes français	136
	Les associations aspirant à organiser la filière de recyclage	139
	4.2 Syndicats de fabricants	148
	APESI – Association des Producteurs d'Electricité Solaire Indépendants	148
	SEMA - Solar Engineering & Manufacturing Association	148

4.3 Les recycleurs	149
4.3.1 Recycleurs initialement producteurs de modules photovoltaïques	150
CP Solar	150
First Solar	151
Solar Cycle GmbH	154
Solar World	155
Showa Shell Sekiyu K.K (Solar Frontier), NEDO et Kitakyushu Fondation	157
4.3.2 Recycleurs initialement producteurs d'un produit autre qui requiert des matières premièr contenues dans les modules PV	
Loser Chemie [61]	159
Targray [13]	162
4.3.3 Recycleurs initialement chargés du traitement de matières premières de modules PV	164
5N Plus	164
Arena Technologies & Nexis	166
Poseidon Solar	167
4.3.4 Recycleurs initialement recycleurs de déchets spécifiques similaires aux modules PV (fil de recyclage connexes)	
Maltha [77]	170
Recupyl – Projet Voltarec	172
REILING [67]	174
REVATECH – Projet RARETE	176
4.3.5 Recycleurs initialement recycleurs de déchets électroniques qui étend son catalogue de	
produits acceptés	
ECS Refining	
4.3.6 Experts scientifiques dont le domaine est commun à celui du procédé de recyclage asso	
Drinkard Metalox Inc	
Photocycle	
PV Recycling	
Saperatec	
4.4 Les projets de recherche	
National Photovoltaic Environmental Research Center	
Projet RESOLAR – Développement d'un système de collecte européen des modules photovoltaïques	
Projet RESOLVED (Recovery of Solar Valuable Materials, Enrichment and Decontaminatio	n) 188
4.5 Les lobbies et associations aspirant à stimuler la filière de recyclage, et ONG pour la défe l'environnement	
SVTC - Silicon Valley Toxics Coalition	192
4.6 Les conférences sur le recyclage des modules photovoltaïques	193
. Mise en perspective des possibilités de recyclage et procédés	194

	5.1 Historique du recyclage PV	. 194
	5.2 Etat des lieux et analyse globale des solutions de traitement des modules photovoltaïques et fin de vie	
	Options de recyclage	. 196
	Valorisation	. 199
	Critères de performance	. 199
	5.3 Analyse comparative des technologies	. 201
	Récapitulatif des technologies et procédés développes	. 201
	Technologies de recyclage	. 203
	Analyse comparative des technologies de recyclage	. 204
	Comparaisons des méthodes et conclusions	. 213
	5.4 Comparaison des acteurs	. 215
	Solutions de recyclage aujourd'hui adoptées par les producteurs	. 215
	Historique des différents acteurs	.216
	Cartographie et caractérisation des types d'acteurs	. 216
	5.5 Capacité de recyclage et gisement de déchets	. 220
	Répartition géographique	. 220
	Comparaison des capacités avec le gisement de déchets	. 224
С	onclusion générale	. 225
Α	nnexe	. 227
	Liste des interviews menées par ENEA Consulting auprès des acteurs de la filière de recyclage modules photovoltaïques	
В	ibliographie	. 228

Liste des figures

Figure 1 - Module photovoltaïque fixé sur montant	16
Figure 2 - Illustration d'un panneau solaire et d'un onduleur	
Figure 3 - Panneau photovoltaïque laminé fixé sur montant	
Figure 4 - Périmètre géographique de l'étude réglementaire	17
Figure 5 - Eléments constitutifs d'un panneau PV	
Figure 6 - Structures variées des cellules photovoltaïques de silicium amorphe selon différents	
fabricants	25
Figure 7 - Segmentation du marché du verre selon ses applications industrielles en 2007, focus sur	
l'industrie du verre plat	
Figure 8 - Répartition des recycleurs d'aluminium dans le monde en 2004	29
Figure 9 - Etapes de la production d'un module photovoltaïque cristallin	30
Figure 10 - Etapes du procédé de fabrication de wafers mono et multi-cristallins	31
Figure 11 - Sources secondaires de silicium cristallin	31
Figure 12 - Evolution du marché mondial annuel et cumulé (MWc) et croissance annuelle du march	é
(%)	35
Figure 13 - Prévisions du marché mondial annuel jusqu'en 2015	35
Figure 14 - Segmentation géographique par pays des puissances installées en %MWc (cumulé	
jusqu'en 2010)	
Figure 15 - Segmentation par pays des puissances installées cumulées en %MWc en 2010 et 2011	36
Figure 16 - Segmentation par type d'utilisateur du marché cumulé connecté au réseau de certains	
pays adhérents de l'IEA en 2010 (puissances connectées)	.37
Figure 17 - Evolution de la production mondiale de cellules (MWc)	38
Figure 18 - Segmentation de la production mondiale de cellules en 2010 par continent (% des MWc	
produits)	
Figure 19 - Segmentation géographique de la production annuelle de cellules en 2009 et 2010 (% d	es
MWc produits)	39
Figure 20 - Segmentation par pays de deux étapes de production en 2010 : Préparation du silicium	
solaire (tonnes) et production de cellules (MW)	39
Figure 21 - Evolution de la capacité installée et de la production annuelle sur 2010-2011 des	
principaux fabricants (MW)	
Figure 22 - Marché européen annuel et cumulé (puissances installées en MWc)	
Figure 23 - Marché européen cumulé actuel et prévisionnel (MW), comparaison des prévisions	41
Figure 24 - Segmentation par pays de la capacité installée cumulée en Europe en 2010 (MWc	
installés)	42
Figure 25 - Evolution de la capacité (puissance connectée en MWc) du marché photovoltaïque	
français de 2006 à 2011	44
Figure 26 - Marché français cumulé actuel et prévisionnel (MW), comparaison des scénarii	
	44
Figure 27 - Segmentation du marché photovoltaïque français par nature d'utilisation des installations	
(% de MWc)	
Figure 28 - Déchets issus de la filière cristalline	
Figure 29 - Déchets issus de la filière CIGS	
Figure 30 - Estimation des pourcentages de modules en fin de vie prématurée selon les causes	
Figure 31 - Quantités prévisionnelles de PV en Europe, gisements, basé sur scénario NREAP	
Figure 32 - Quantités prévisionnelles de PV en France, gisements, basé sur scénario NREAP	51
Figure 33 - Quantités prévisionnelles de PV recyclés en Europe, gisements massiques, basé sur	
scénario NREAP	51
Figure 34 - Quantités prévisionnelles de PV recyclés en France, gisements massiques, basé sur	
scénario NREAP	
Figure 35 - Enveloppe des quantités prévisionnelles cumulées de PV recyclés en Europe, gisement	
massiques	
Figure 36 - Enveloppe des quantités prévisionnelles cumulées de PV recyclés en France, gisements	
massiques	
Figure 37 - Répartition des points d'enlèvement par catégorie en France	
Figure 38 - Performance de collecte des DEEE ménagers (en kg/an/hab) en France	
Figure 39 - Réglementations relatives aux déchets dans le Monde	
Figure 40 - Objectifs imposés par la directive DEEE	
Figure 41 - Chronogramme de la mise en application de la nouvelle révision de la DEEE	
Figure 42 - Etapes du recyclage d'un module photovoltaïque	74

Figure 43 - Schéma bloc de la technologie Antec Solar de recyclage par voie gazeuse de modules	en
	. 79
Figure 44 - Schéma bloc de la technologie de recyclage de modules en couches minces brevetée p	
Calyxo	
Figure 45 - Schéma-bloc de la technologie Drinkard (couches minces)	
Figure 46 - Technologie de décapage de cellules cristallines développée par Gdansk University	. 86
Figure 47 - Schéma bloc de la technologie électrochimique de recyclage du CdTe de modules en fil	n
de vie - InterPhases Research	. 88
Figure 48 - Schéma représentatif de la technologie de séparation de l'encapsulant par rayon laser c	de
Jenoptik	
Figure 49 - Schéma de la technologie de recyclage du verre et du silicium solaire du KRICT	. 93
Figure 50 - KRICT - Schéma explicatif des effets des solvants organiques sur l'EVA	
Figure 51 - Primestar Solar - Vue d'ensemble de l'invention du four sous vide pour la séparation du	
	. 97
Figure 52 - Réacteur à lit fluidisé élaboré par Frisson et al. pour la gazéification de l'EVA et de la	
surface inférieure en tedlar (Soltech/Seghers)	. 99
Figure 53 - Schéma bloc du procédé de recyclage des modules en fin de vie de types CIGS de 5N	
Plus	102
Figure 54 - Plan prévisionnel des installations de recyclage de CP Solar	
Figure 55 - Schéma bloc du procédé de recyclage des modules en couches minces CdTe de First	
Solar	108
Figure 56 - Schéma représentant les différentes étapes de recyclage des modules en couches mind	
par Loser Chemie	
Figure 57 - Schéma du procédé de recyclage du verre par Maltha	
Figure 58 - Schéma bloc du procédé de recyclage de Recupyl	
Figure 59 - Fonctionnement du procédé de recyclage de modules cristallins de Reiling	
Figure 60 - Schéma bloc du procédé de Saperatec	
Figure 61 - Schéma du procédé de recyclage de modules cristallins de Solar World en 2010	
Figure 62 - La filière de collecte et de traitement des DEEE	
Figure 63 - Carte européenne des points de collecte PV CYCLE en avril 2012	
Figure 64 - Schéma organisationnel de PV CYCLE	
Figure 65 - Schéma organisationnel du CERES	
Figure 66 - Diagramme des activités de First Solar	102
Figure CO. Activitée de Color Werld dans les différentes filières de reguelers de modules en fin de v	
Figure 68 - Activités de Solar World dans les différentes filières de recyclage de modules en fin de y	
vie Figure 70 - Activités de Loser Chemie dans les différentes filières de recyclage de modules en fin d	100
vie Figure 71 - Activités de Targray dans les différentes filières de recyclage de modules en fin de vie	100
Figure 72 - Activités de 5N Plus dans les différentes filières de recyclage de modules en fin de vie.	
Figure 73 - Activités d'Arena Technologies dans les différentes filières de recyclage de modules en	
de vie	
Figure 74 - Activités de Poseidon Solar dans les différentes filières de recyclage de modules en fin	
vie	
Figure 75 - Système de recyclage du silicium de Poseidon Solar	
Figure 76 - Activités de Maltha dans les différentes filières de recyclage de modules en fin de vie	
Figure 77 - Activités de Recupyl dans la filière de recyclage des modules photovoltaïques	
Figure 78 - Activités de Reiling dans les différentes filières de recyclage de modules en fin de vie	174
Figure 79 - Activités de Revatech dans les filières de collecte et recyclage de matériaux	
photovoltaïques	177
Figure 80 - Activités de PV Recycling dans les filières de collecte et recyclage de matériaux	
photovoltaïques	182
Figure 81 - Schéma explicatif du fonctionnement de la filière de collecte et du recyclage de PV	
Recycling	
Figure 82 - Activités de Saperatec dans les différentes filières de recyclage de modules en fin de vie	
Figure 83 - Schéma du projet RESOLVED (couches minces)	
Figure 84 - Diagramme résumant la stratégie de recyclage établie dans le projet SENSE	
Figure 85 - Exemple de carte de notation de Q-Cells élaborée par la SVTC	192
·	

Figure 86 - Frise historique de la filière de recyclage des modules photovoltaïques	195
Figure 87 - Les différentes options de recyclage des PV	196
Figure 88 - Niveaux de pureté possibles pour le recyclage du silicium	198
Figure 89 - Priorités du recyclage	200
Figure 90 - Schéma représentant les deux méthodes et les trois principales familles d'opération	de
recyclage	
Figure 91 - Planisphère représentant l'ensemble des unités de recyclage installées en 2012 (pil	
industrielles) identifiées par RECORD / ENEA Consulting	221
Figure 92 - Planisphère représentant l'ensemble des unités de recyclage pressenties en 2020 (pilotes
et industrielles) identifiées par RECORD / ENEA Consulting	221
Figure 93 - Projets d'unités de recyclage de modules cristallins prévisionnels et installés (pilotes	s et
industriels) en 2020	223
Figure 94 - Projets d'unités de recyclage de modules en couches minces prévisionnels et instal	
(pilotes et industriels) en 2020	223

Liste des tableaux

Tableau 1 - Caractéristiques et performances des technologies cristallines	19
Tableau 4 - Détails de composants possibles de l'ensemble des couches d'un module PV cristallin. Tableau 5 - Composition d'un module photovoltaïque cristallin type de 215 Wc et 22,4 kg, caractéristiques et proportion des composants	
Tableau 6 - Détails de composants possibles de l'ensemble des couches d'un module PV de type CdTe	22
Tableau 7 - Composition d'un module photovoltaïque en couches minces CdTe de 120*60 cm, caractéristiques et proportion des composants	
	23
Tableau 9 - Composition d'un module photovoltaïque en couches minces de silicium amorphe (a-Si de 14 Wc et 0,72 m², caractéristiques et proportion des composants	. 23
CIGS Tableau 11 - Composition d'un module photovoltaïque en couches minces CIGS à 110 Wc/m²,	24
caractéristiques et proportion des composants	24
Tableau 13 - Production mondiale en 2007 des différents matériaux composant les modules PV et I TMR	leur 27
Tableau 14 - Prix des composants sur le marché en 2010 et prix de revente issus du recyclage Tableau 15 - Qualité du verre recyclé et débouchés industriels associés	28
Tableau 16 - Pourcentages massiques de métaux stratégiques dans un module photovoltaïque Tableau 17 - Capacité installée cumulée des pays européens en 2008, 2009 et 2010 (MWc installés	s)
Tableau 18 - Segmentation de la puissance installée européenne par type d'utilisation et pays Tableau 19 - Segmentation du marché des PV installés par technologie, estimation du passé et	. 42
prévisions futures	
Tableau 21 - Liste des réglementations étudiées au niveau mondial	61
Tableau 22 - Substances contenues dans les PV et encadrées par la RoHS	68
Tableau 23 - Politique de gestion des déchets aux Etats-Unis	71
Tableau 24 - Ensemble des procédés testés ou utilisés pour le recyclage de modules photovoltaïqu	75
Tableau 25 - Liste des recherches ayant échoué ou n'ayant pas été poursuivies	de
Tableau 27 - Etat de l'EVA (performance de la séparation) selon les solvants organiques et les tem de séjour pour la technologie KRICT	ps
Tableau 28 - Bilan énergétique global du procédé de recyclage de CP Solar	
Tableau 29 - Analyse économique préliminaire de l'installation d'unités de recyclage de CP Solar Tableau 30 - Procédé First Solar/SGS Minerals Données thermodynamiques du procédé hydrométallurgique de lixiviation du CdTe	
Tableau 31 - Procédé First Solar/SGS Minerals – Bilan matière de la lixiviation	
Tableau 32 - Procédé First Solar/SGS Minerals – Bilan matière de la séparation verre/EVA	
Tableau 33 - Procédé First Solar/SGS Minerals – Résultats de la précipitation	
Tableau 34 - Tableau des "Membership fees" et du nombre de voix à l'assemblée générale de l'association PV CYCLE en 2012	141
Tableau 35 - Tableau des frais d'adhésion au CERES selon la catégorie en 2012	
Tableau 36 - Faisabilité du recyclage avec des filières connexes	
Tableau 37 - Voies de recyclage par fraction	
Tableau 38 - Liste des technologies et procédés de recyclage des modules photovoltaïques	
Tableau 40 - Séparation semi-conducteurs, technologies cristallines (C1)	
Tableau 41 - Séparation semi-conducteurs, technologies cristallines (B2)	
Tableau 42 - Séparation sélective métaux / semi-conducteurs, technologies cristallines (B2)	
Tableau 43 - Délaminage et séparation du verre, couches minces (B1)	209
Tableau 44 - Séparation semi-conducteurs, couches minces (C1)	
Etude n° 11-0912/1A	12

Recyclage des panneaux photovoltaïques - Etat des lieux international

Tableau 45 - Séparation semi-conducteurs, couches minces (B2)	211
Tableau 46 - Séparation semi-conducteurs, couches minces (C2)	
Tableau 47 - Procédés développés pour chacune des étapes et méthodes	213
Tableau 48 - Comparaison synthétique des deux méthodes	213
Tableau 49 - Positionnement de quelques producteurs vis-à-vis du recyclage des PV	215
Tableau 50 - Liste des types d'acteurs du recyclage des modules photovoltaïques selon leur coeu	ır de
métier d'origine	217
Tableau 51 - Modèles de financement de la collecte	218
Tableau 52 - Modèles de financement du recyclage	218
Tableau 53 - Répartition des projets de recyclage PV identifiés par RECORD / ENEA Consulting.	220

Glossaire

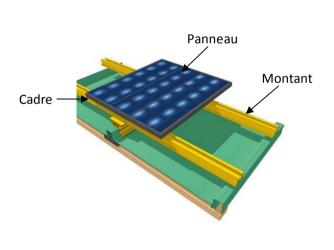
Agent Agent, utilisé comme métalliseur Agent Agent Aussi appeilé agent de surface : composé qui modifie la tension superficielle entre tensioactif deux surfaces B Bore, utilisé comme dopant de semi conducteur de type p- BRIL "Brock Surface Field", couches inférieures du panneau photovoltaïque BRTP Bâtiment Travaux Publics c-Si Désignation pour l'ensemble des technologies photovoltaïques cristallines CCFL "Coid Cathode Fluorescent Lamp", technologie d'écran proche des LCD Cd Cadmium CdS Suffure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdS CdTe Tellurure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdS CdTe La chimie verte caractérise des procédés mettant en jeu des réactions chimiques avec des produits non-polluants (pas d'émissions de gaz toxiques ou polluants, ni d'impact environnemental). La solution servant « en boucle fermé» à la séparation des métaux est purgée lorsqu'elle atteint un niveau d'impureté de saturation, puis purifiée et réinjectée dans le système de recyclage. La solution est organique et minérale. ClGS CulnGaSe CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes Crucible Silicon Silicon produit par Poseidon Solar issu du recyclage de debirs de production de silicium multi-cristallin, dans la production de cellules photovoltaïques en couches minces Silicium produit par Poseidon Solar issu du recyclage de debirs de production de silicium multi-cristallin, dans la production de cellules photovoltaïques. Cu Cuivre, composant des fils électriques Délaminage Délami	ACV	Analyse de Cycle de Vie				
Agent deux surfaces: composé qui modifie la tension superficielle entre deux surfaces B Bore, utilisé comme dopant de semi conducteur de type p- BNL "Brookhaven National Laboratory" BSF "Back Surface Field", couches inférieures du panneau photovoltaïque BTP Bătiment Travaux Publics C-Si Désignation pour l'ensemble des technologies photovoltaïques cristallines CCFL "Cold Cathode Fluorescent Lamp", technologie d'écran proche des LCD Cd Cadmium CdS Sulfure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdS Tellurure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdTe La chimie verte caractérise des procédés mettant en jeu des réactions chimiques avec des produits non-polluants (pas d'émissions de gaz toxiques ou polluants, not d'impact environnemental). La solution servant « en boucle fermée » à la séparation des métaux est purgée lorsqu'elle atteint un niveau d'impureté de saturation, puis purifiée et réinjectée dans le système de recyclage. La solution est organique et minérale. CIGS CulnGaSe CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes Crucible Silicon Crucible Silicon Désignation pour l'ensemble des technologies photovoltaïques en couches minces Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industrie solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixè à du silicium multi-cristalli, dans la production de cellules photovoltaïques en couches minces Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industrie solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixè à du silicium multi-cristalli, dans la production de cellules photovoltaïques en couches minces Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industrie solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixè à du silicium multi-cristalli, dans la production de cellules photovoltaïques consiste à changer la structure la mai	, ,					
tensioactif deux surfaces " B Bore, utilisé comme dopant de semi conducteur de type p- BNL "Brookhaven National Laboratory" BSF "Back Surface Field", couches intérieures du panneau photovoltaïque BTP Bătiment Travaux Publics C-Si Désignation pour l'ensemble des technologies photovoltaïques cristallines CCFL "Cold Cathode Fluorescent Lamp", technologie d'écran proche des LCD Cd Cadmium Sulfure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdS Sulfure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdTe Chimie Verte Chimie Chimie Verte Chimie Chimie Verte Chimie Chimie Verte Chimie Chimie Chimie Chimie Chimie		•				
BNL "Brookhaven National Laboratory" BSF "Back Surface Field", couches inférieures du panneau photovoltaïque BTP Bătiment Travaux Publics C-Si Désignation pour l'ensemble des technologies photovoltaïques cristallines CCFL "Cold Cathode Fiuorescent Lamp", technologie d'écran proche des LCD Cd Cadmium CdS Sulfure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdS CdTe Clillurure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdTe Calmium Chimie Verte La chimie verte caractérise des procédés mettant en jeu des réactions chimiques avec des produits non-pollulants (pas d'émissions de gaz toxiques ou polluants, ni d'impact environnemental). La solution servant « en boucle fermée » à la séparation des métaux est purgée lorsqu'elle atteint un niveau d'impureté de saturation, puis purifiée et réinjectée dans le système de recyclage. La solution est organique et minérale. CLICGS CulnGaSe CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes Crucible Silicon Crucible Silicon Crucible Silicon Désignation pour l'ensemble des technologies photovoltaïques en couches minces Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industrie solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixé à du silicium multi-cristallin, dans la production de cellules photovoltaïques. Cu Cuivre, composant des fils électriques CuSn Bronze, alliage de cuivre et d'étain Délaminage Délaminage Délaminage Délaminage Démantèlement						
BNL "Brockhaven National Laboratory"						
BSF Back Surface Field*, couches inférieures du panneau photovoltaïque BTP Bâtiment Travaux Publics CSFL "Cold Cathode Fluorescent Lamp", technologie d'écran proche des LCD CGL "Cold Cathode Fluorescent Lamp", technologie d'écran proche des LCD CGL Cadnium CGS Sulfure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdS Tellurure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdTe CdTe Celliure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdTe La chimie verte caractérise des procédés mettant en jeu des réactions chimiques avec des produits non-polluants (pas d'émissions de gaz toxiques ou polluants, ni d'impact environnemental). La sollution servant « en boucle fermée » à la séparation des métaux est purgée lorsqu'elle atteint un niveau d'impureté de saturation, puis purifiée et réinjectée dans le système de recyclage. La solution est organique et minérale. CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes Crucible Silicon Silicium produit par Poseidon Solar issu du recyclage de débris de production de silicium multi-cristallin, dans la production de cellules photovoltaïques. Cu Cuivre, composant des fils électriques CuSon Bronze, alliage de cuivre et d'étain Dans le cadre de cette étude, une activité de délaminage consiste à changer la structure laminaire d'un objet, et revient donc à séparer les différentes couches en altérant la nature de l'encapsulant. Demantèlement Démantèlement Démantèlement Démantèlement de l'encapsulant. Dans le cadre de cette étude, une activité de délaminage consiste à changer la structure laminaire d'un objet, et revient donc à séparer les différentes couches en altérant la nature de l'encapsulant. Dans le cadre de cette étude, in démantèlement désigne l'activité de séparation des module). Downcycling ES Economie Solidaire et Sociale EU Etats-Unis	, , , , , , , , , , , , , , , , , , , ,					
C-Si C-Si Désignation pour l'ensemble des technologies photovoltaïques cristallines CCFL Cod Cathode Fluorescent Lamp*, technologie d'écran proche des LCD Cd Cadmium CdS Suffure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdS CdTe CdTe Catimité de Cadmium, utilisé comme semi-conducteur pour les modules de type CdTe La chimie verte caractérise des procédés mettant en jeu des réactions chimiques avec des produits non-polluants (pas d'émissions de gaz toxiques ou polluants, or d'impact environnemental). La solution servant « en boucle fermée » à la séparation des métaux est purgée lorsqu'elle atteint un niveau d'impureté de saturation, puis purifiée et réinjectée dans le système de recyclage. La solution est organique et minérale. CIGS CulnGaSE CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes CL CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes CL CL Cuivre, composant des fils électriques Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industrie solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixé à du silicium multi-cristallin, dans la production de cellules photovoltaïques. CUS CL CL Cuivre, composant des fils électriques Délaminage Délaminage Délaminage Délaminage Démantèlement	, , , , , , , , , , , , , , , , , , ,					
CSI Désignation pour l'ensemble des technologies photovoltaïques cristallines CCFL "Cold Cathode Fluorescent Lamp", technologie d'écran proche des LCD Cd Cadmium CdS Sulfure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdS Tellurure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdTor La chimie verte caractérise des procédés mettant en jeu des réactions chimiques avec des produits non-polluants (pas d'émissions de gaz toxiques ou polluants, ni d'impact environnemental). La solution servant « en boucle fermée » à la séparation des métaux est purgée lorsqu'elle atteint un inveau d'impureté de saturation, puis purifiée et réinjectée dans le système de recyclage. La solution est organique et minérale. CLIGS CulnGaSe CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes CM Désignation pour l'ensemble des technologies photovoltaïques en couches minces Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industrie solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixé à du silicium multi-cristallin, dans la production de cellules photovoltaïques. Cu Cuivre, composant des fils électriques CuSn Bronze, alliage de cuivre et d'étain Dans le cadre de cette étude, une activité de délaminage consiste à changer la structure laminaire d'un objet, et revient donc à séparer les différentes couches en altérant la nature de l'encapsulant. Downcycling Downcycling Downcycling ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institut of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO "New Energy and industrial technology Development Organization" "National Renewable Energy Acti	BTP					
CGE Cd Cadmium CdS Sulfure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdS Tellurure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdTe Tellurure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdTe CdTe La chimie verte caractérise des procédés mettant en jeu des réactions chimiques avec des produits non-polluants (pas d'émissions de gaz toxiques ou polluants, nu d'impacte environnemental). La soulution servant « en boucle fermée » à la séparation des métaux est purgée lorsqu'elle atteint un niveau d'impureté de saturation, puis purifiée et réinjectée dans le système de recyclage. La solution est organique et minérale. CIGS CulnGaSE CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes CM Désignation pour l'ensemble des technologies photovoltaïques en couches minces Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industris solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixé à du silicium multi-cristallin, dans la production de cellules photovoltaïques. Cu Cuivre, composant des filis électriques CuSn Bronze, alliage de cuivre et d'étain Délaminage Délaminage Délaminage Démantèlement Déma		Désignation pour l'ensemble des technologies photovoltaïques cristallines				
CdS Sulfure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdS CdTe La chimie verte caractérise des procédés mettant en jeu des réactions chimiques avec des produits non-polluants (pas d'émissions de gaz toxiques ou polluants, ni d'impact environnemental). La solution servant « en boucle fermée » à la séparation des métaux est purgée lorsqu'elle atteint un inveau d'impureté de saturation, puis purifiée et réinjectée dans le système de recyclage. La solution est organique et minérale. CIGS CulnGaSe CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes Désignation pour l'ensemble des technologies photovoltaiques en couches minces Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industrie solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixè à du silicium multi-cristallin, dans la production de cellules photovoltaiques. Cu Cuivre, composant des filis électriques CuSn Bronze, alliage de cuivre et d'étain Dans le cadre de cette étude, une activité de délaminage consiste à changer la structure laminaire d'un objet, et revient donc à séparer les différentes couches en altérant la nature de l'encapsulant. Démantèlement Démantèlement Dans le cadre de cette étude, le démantèlement désigne l'activité de séparation des différents composants d'un module PV (boîtier de raccordement, câbles, cadre, module). Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Soliclaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs', tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institut of Electrical and Electronics Engineers" Oxyde d'Indium, composant de l'ITO "Indium Tin Oxde": l'oxyde d'étain et d'indium est un type de TCO						
Sulfure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdS Tellurure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdTe Tellurure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdTe La chimie verte caractérise des procédés mettant en jeu des réactions chimiques avec des produits non-polluants (pas d'émissions de gaz toxiques ou polluants, ni d'impact environnemental). La solution servant « en boucle fermée » à la séparation des métaux est purgée lorsqu'elle atteint un niveau d'impureté de saturation, puis purifiée et réinjectée dans le système de recyclage. La solution est organique et minérale.		, , ,				
CdTe La chimie verte caractérise des procédés mettant en jeu des réactions chimiques avec des produits non-polluants (pas d'émissions de gaz toxiques ou polluants, ni d'impact environnemental). La solution servant « en boucle fermée » à la séparation des métaux est purgée lorsqu'elle atteint un niveau d'impureté de saturation, puis purifiée et réinjectée dans le système de recyclage. La solution est organique et minérale. CIGS CulnGaSe CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes CM Désignation pour l'ensemble des technologies photovoltaïques en couches minces Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industrie solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixé à du silicium multi-cristallin, dans la production de cellules photovoltaïques. CuS CuS Bronze, alliage de cuivre et d'étain Dans le cadre de cette étude, une activité de délaminage consiste à changer la structure laminaire d'un objet, et revient donc à séparer les différentes couches en altérant la nature de l'encapsulant. Dans le cadre de cette étude, le démantèlement désigne l'activité de séparation des différents composants d'un module PV (boîtier de raccordement, câbles, cadre, module). Downcycling Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV Fil' "Feed-in tarifis", tarifis de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "Intermational Energy Agency", Agence Internationale de l'Energie EEE "Institute of Electrical and Electronics Engineers" In ₂ O Oxyde d'Indium, composant de l'ITO "Indum Tin Oxide": l'oxyde d'éta		Sulfure de Cadmium, utilisé comme semi-conducteur pour les modules de type CdS				
avec des produits non-polluants (pas d'émissions de gaz toxiques ou polluants, ni d'impact environnemental). La solution servant « en boucle fermée » à la séparation des métaux est purgée lorsqu'elle atteint un niveau d'impureté de saturation, puis purifiée et réinjectée dans le système de recyclage. La solution est organique et minérale. CIGS CuinGaSe CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes CM Désignation pour l'ensemble des technologies photovoltaïques en couches minces Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industrie solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixé à du silicium multi-cristallin, dans la production de cellules photovoltaïques. Cu Cuivre, composant des fils électriques CuSn Bronze, alliage de cuivre et d'étain Dans le cadre de cette étude, une activité de délaminage consiste à changer la structure laminaire d'un objet, et revient donc à séparer les différentes couches en altérant la nature de l'encapsulant. Dans le cadre de cette étude, le démantèlement désigne l'activité de séparation des différents composants d'un module PV (boîtier de raccordement, câbles, cadre, module). Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "Institute of Electrical and Electronics Engineers" InpQ3 Oxyde d'Indium, composant de l'ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de ln _Q Q ₃ et 10% de SnO ₂ LCD "L'iqui Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NREAP "New Energy and industrial technology Development Organization" "National R	CdTe	Tellurure de Cadmium, utilisé comme semi-conducteur pour les modules de type				
CIGS CL Point d'enlèvement CL : point d'enlèvement spécifique aux éco-organismes Désignation pour l'ensemble des technologies photovoltaïques en couches minces Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industrie solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixé à du silicium multi-cristallin, dans la production de cellules photovoltaïques. Cu Cuivre, composant des fils électriques Bronze, alliage de cuivre et d'étain Dans le cadre de cette étude, une activité de délaminage consiste à changer la structure laminaire d'un objet, et revient donc à séparer les différentes couches en altérant la nature de l'encapsulant. Démantèlement Démantèlement Démantèlement Downcycling Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de ln ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+	Chimie Verte	avec des produits non-polluants (pas d'émissions de gaz toxiques ou polluants, ni d'impact environnemental). La solution servant « en boucle fermée » à la séparation des métaux est purgée lorsqu'elle atteint un niveau d'impureté de saturation, puis				
CL Point d'enlèvement CL: point d'enlèvement spécifique aux éco-organismes Désignation pour l'ensemble des technologies photovoltaïques en couches minces Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industrie solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixé à du silicium multi-cristallin, dans la production de cellules photovoltaïques. Cu Cuivre, composant des fils électriques Dans le cadre de cette étude, une activité de délaminage consiste à changer la structure laminaire d'un objet, et revient donc à séparer les différentes couches en altérant la nature de l'encapsulant. Dans le cadre de cette étude, le démantèlement désigne l'activité de séparation des différents composants d'un module PV (boîtier de raccordement, câbles, cadre, module). Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de ln ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molyddène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+	CIGS					
CM Désignation pour l'ensemble des technologies photovoltaîques en couches minces Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industrie solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixé à du silicium multi-cristallin, dans la production de cellules photovoltaîques. Cu Cuivre, composant des fils électriques Bronze, alliage de cuivre et d'étain Dans le cadre de cette étude, une activité de délaminage consiste à changer la structure laminaire d'un objet, et revient donc à séparer les différentes couches en altérant la nature de l'encapsulant. Dans le cadre de cette étude, le démantèlement désigne l'activité de séparation des différents composants d'un module PV (boîtier de raccordement, câbles, cadre, module). Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de ln ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdêne, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+						
Crucible Silicon Cu Cuivre, composant des fils électriques CuSn Bronze, alliage de cuivre et d'étain Dans le cadre de cette étude, une activité de délaminage consiste à changer la structure laminaire d'un objet, et revient donc à séparer les différentes couches en altérant la nature de l'encapsulant. Délaminage Démantèlement Dans le cadre de cette étude, le démantèlement désigne l'activité de séparation des différents composants d'un module PV (boîtier de raccordement, câbles, cadre, module). Downcycling Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO I'Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de ln ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NREAP "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Plomb, utilisé pour les soudures des différents éléments d'un module		·				
CuSn Bronze, alliage de cuivre et d'étain Dans le cadre de cette étude, une activité de délaminage consiste à changer la structure laminaire d'un objet, et revient donc à séparer les différentes couches en altérant la nature de l'encapsulant. Dans le cadre de cette étude, le démantèlement désigne l'activité de séparation des différents composants d'un module PV (boîtier de raccordement, câbles, cadre, module). Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de ln ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Plomb, utilisé comme dopant de semi conducteur de type n+		Silicium produit par Poseidon Solar issu du recyclage de débris de production de l'industrie solaire. La qualité du « Crucible Silicon » permet de le réutiliser, mixé à du				
Délaminage Bronze, alliage de cuivre et d'étain Dans le cadre de cette étude, une activité de délaminage consiste à changer la structure laminaire d'un objet, et revient donc à séparer les différentes couches en altérant la nature de l'encapsulant. Dans le cadre de cette étude, le démantèlement désigne l'activité de séparation des différents composants d'un module PV (boîtier de raccordement, câbles, cadre, module). Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In2O3 Oxyde d'Indium, composant de l'ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de ln ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Plomb, utilisé pour les soudures des différents éléments d'un module	Cu					
Dans le cadre de cette étude, une activité de délaminage consiste à changer la structure laminaire d'un objet, et revient donc à séparer les différentes couches en altérant la nature de l'encapsulant. Dans le cadre de cette étude, le démantèlement désigne l'activité de séparation des différents composants d'un module PV (boîtier de raccordement, câbles, cadre, module). Downcycling Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de In ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Plomb, utilisé pour les soudures des différents éléments d'un module						
Altérant la nature de l'encapsulant. Dans le cadre de cette étude, le démantèlement désigne l'activité de séparation des différents composants d'un module PV (boîtier de raccordement, câbles, cadre, module). Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de ln ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module		Dans le cadre de cette étude, une activité de délaminage consiste à changer la				
Démantèlement différents composants d'un module PV (boîtier de raccordement, câbles, cadre, module). Downcycling Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de In ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module	Dolariii	altérant la nature de l'encapsulant.				
Downcycling Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de In ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module	D (())					
Consiste à recycler un élément à un niveau de pureté inférieur à celui requis dans son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de ln ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module	Demantelement					
Son contexte d'application d'origine ESS Economie Solidaire et Sociale EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de ln ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module		,				
EU Etats-Unis EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de In ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module		son contexte d'application d'origine				
EVA Ethylène Vinyl Acétate, utilisé comme encapsulant dans la plupart des modules PV FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de In ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module						
FIT "Feed-in tariffs", tarifs de rachat Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de In ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module						
Ga Gallium HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de In ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module						
HIT "Heterojunction with Intrinsic Thin layer", couches minces à hétéro jonction IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de In ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module		,				
IEA "International Energy Agency", Agence Internationale de l'Energie IEEE "Institute of Electrical and Electronics Engineers" In ₂ O ₃ Oxyde d'Indium, composant de l'ITO ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de In ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie P Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module						
IEEE "Institute of Electrical and Electronics Engineers" In2O3 Oxyde d'Indium, composant de l'ITO ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de In2O3 et 10% de SnO2 LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module						
In ₂ O ₃ Oxyde d'Indium, composant de l'ITO "Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de In ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module						
#Indium Tin Oxide": l'oxyde d'étain et d'indium est un type de TCO composé à 90% de In2O3 et 10% de SnO2 LCD		ÿ .				
de In ₂ O ₃ et 10% de SnO ₂ LCD "Liquid Crystal Display", affichage à cristaux liquides Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des NREAP objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module	In ₂ U ₃					
Mo ou MDI Molybdène, utilisé comme métalliseur pour des technologies variées "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module	ITO					
NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie Phosphore, utilisé comme dopant de semi conducteur de type n+ Plomb, utilisé pour les soudures des différents éléments d'un module	LCD					
NEDO "New Energy and industrial technology Development Organization" "National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module	Mo ou MDI	Molybdène, utilisé comme métalliseur pour des technologies variées				
"National Renewable Energy Action Plan", déclinaison par pays de l'UE des objectifs d'incorporation d'énergie renouvelable dans le mix énergétique, segmentée par source d'énergie Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module	NEDO					
par source d'énergie Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module		"National Renewable Energy Action Plan", déclinaison par pays de l'UE des				
P Phosphore, utilisé comme dopant de semi conducteur de type n+ Pb Plomb, utilisé pour les soudures des différents éléments d'un module	NREAP					
Pb Plomb, utilisé pour les soudures des différents éléments d'un module	Р					
, ,						
	PIBS					

PLS	"Pregnant Leaching Solution": solution de lixiviation chargée en métaux stratégiques en sortie de procédé de recyclage						
PV Photovoltaïque							
PV EHS	"Photovoltaic Environment Health and Safety"						
REP	Responsabilité Elargie du Producteur						
RES	"Renewable Energy Source", source d'énergie renouvelable dans les scénarii NREAP						
Se	Sélénium						
Silicon Wafer	Gaufre de silicium						
Si ₃ N ₄	Nitrure de silicium						
Sodocalcique	Famille de verres à base de silice SiO ₂ , de calcium et de sodium introduits en général à la fabrication sous forme de CaO et Na ₂ O						
Sn	Etain, utilisé pour les soudures des différents éléments électroniques d'un module						
SnO ₂	Dioxyde d'étain, composant de l'ITO						
SVTC	"Silicon Valley Toxics Coalition"						
тсо	<i>"Transparent Conductive Oxide"</i> : l'oxyde transparent et conducteur est le revêtement pour la couche supérieure et inférieure des cellules en couches minces						
Те	Tellure						
Terres rares	Les terres rares sont un groupe d'éléments aux propriétés chimiques voisines, du numéro atomique 57 à 71. Elles comprennent le scandium (Sc), l'yttrium (Y) et les quinze lanthanides (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb). Du point de vue de l'économie mondiale, ils font partie des métaux stratégiques.						
TMR	"Total Material Requirement": Quantité totale de matière requise						
UE	Union Européenne						
UV	Ultraviolet						

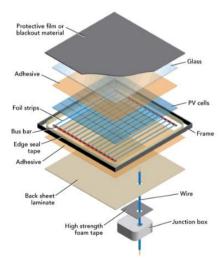
1. Bases d'études

1.1 Objectifs de l'étude

La présente étude vise à fournir une vision complète de la problématique du recyclage des panneaux photovoltaïques en fin de vie, incluant une analyse des technologies déployées, des procédés de recyclage les plus prometteurs, et des perspectives de développement pour ces procédés en fonction des évolutions réglementaires et du marché photovoltaïque.

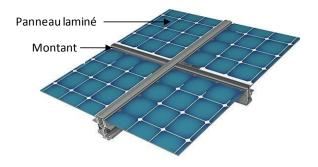

1.2 Définition des périmètres de l'étude

PERIMETRE TECHNIQUE


Définitions:

- On désigne par module photovoltaïque le cadre du panneau, le boîtier de raccordement et le panneau lui-même (cellules, couches supérieures et inférieures) mais pas son montant ni le reste des installations électriques d'un système photovoltaïque.
- La notion de **panneau photovoltaïque** désigne pour sa part l'ensemble des couches qui couvrent et protègent les cellules photovoltaïques excluant le cadre éventuel et le boîtier de raccordement. La notion de « panneau » exclut tout composant du système photovoltaïque ainsi que le montant sur lequel le module photovoltaïque est fixé.

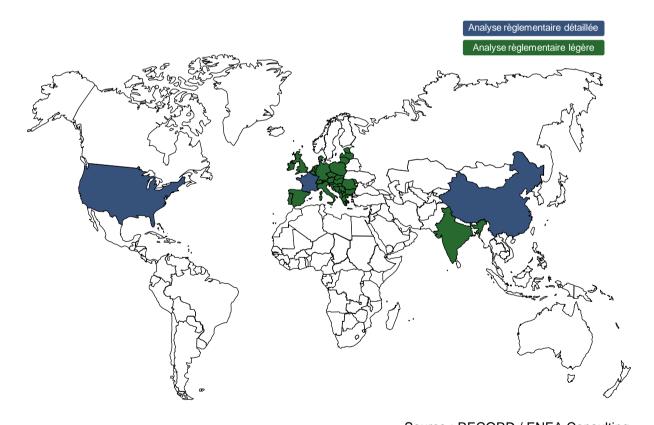
La présente étude porte sur les modules photovoltaïques.



Source : http://www.alubel.it
Solution pour l'application de modules sur Alugraf
Figure 1 - Module photovoltaïque fixé sur
montant

Source: Fabrico

Figure 2 - Illustration d'un panneau solaire et d'un onduleur



Source : www.archiexpo.fr Module photovoltaïque pour bardage SR 40 Solar Figure 3 - Panneau photovoltaïque laminé fixé sur montant

PERIMETRE GEOGRAPHIQUE

Les pays couverts lors de l'analyse réglementaire sont indiqués sur la **Figure 4**.

Pour l'analyse de marché, trois périmètres géographiques ont été retenus : France, Europe, Monde.

Source : RECORD / ENEA Consulting Figure 4 - Périmètre géographique de l'étude réglementaire

Etude n° 11-0912/1A 17

PERIMETRE TECHNOLOGIQUE

Seules les technologies suivantes sont considérées pour l'étude des procédés de recyclage existants ou en développement qui leur sont adaptées :

- Mono-cristallines (c-Si)
- Multi-cristallines (c-Si)
- Cristallines amorphe (a-Si)
- Couches minces de type CdTe
- Couches minces de type CIGS

Les technologies PV de 3^e génération (cellules organiques) sont estimées trop peu matures pour que des données consolidées de recyclage de ces panneaux soient aujourd'hui disponibles.

1.3 Les technologies du photovoltaïque

TABLEAU COMPARATIF DES TECHNOLOGIES

Aujourd'hui trois grandes classes de technologies de panneaux photovoltaïques coexistent :

- Technologies cristallines (1ère génération)
- Technologies sur couches minces (2^{nde} génération)
- Technologies variées (3^{ème} génération)

On note que la classification par génération des technologies photovoltaïques est aujourd'hui parfois dépassée. Les dénominations « cristallines » et « couches minces » sont donc privilégiées dans la suite du présent rapport.

		1 ^{ère} génération - Technologie cristalline			
		Silicium mono- cristallin (c-Si)	Silicium multi- cristallin (c-Si)	Ruban de silicium	Heterojunction intrinsic thin layer (HIT)
	Plage de rendement module	15 - 21 %	13 - 17 %	11-15 %	16,5 - 20%
Ses	Puissance spécifique moyenne par unité de surface (Wc / m2)	166	142	133	153
ormance	Masse spécifique moyenne par unité de puissance (kg/Wc)	0,08	0,085		0,08
4	Garantie du rendement supérieur à 80 % (années)	25	25	25	
Pel	Garantie du rendement supérieur à 90 % (années)	10	10	10	
	Maturité de la technologie	Commercial	Commercial	Commercial	En Développement

Source: www.photon.info.com, ADEME

Tableau 1 - Caractéristiques et performances des technologies cristallines

Dans ce tableau, ce sont des valeurs moyennes de puissances spécifiques et de masse spécifiques qui sont indiquées. Ces dernières sont naturellement conditionnées par le rendement du module : Quand le rendement est dans le haut de la fourchette annoncée, la puissance spécifique est supérieure à sa valeur moyenne, tandis que la masse spécifique est inférieure à sa valeur moyenne. A titre d'illustration, la puissance spécifique de modules mono-cristallins à haut rendements dépasse les 200 Wc/m².

Par ailleurs, au sein de cette famille cristalline, la technologie « ruban de silicium » demeure anecdotique.

Définition des termes utilisés :

• **Puissance crête** [1]: Valeur de référence permettant de comparer les puissances des panneaux entre elles. La puissance crête est obtenue par des tests effectués en laboratoire dans les conditions standards¹.

¹ Conditions standards: Sous une irradiation de 1 000 W/m², une température de 25°C, avec une répartition spectrale du rayonnement dit AM 1.5, correspondant au rayonnement solaire parvenant au sol après avoir traversé une atmosphère de masse 1kg à un angle de 45°.

- Watt crête: Unité de puissance délivrée par un module photovoltaïque sous des conditions standards¹.
- Rendement module: Le rendement module donne une appréciation de la qualité de fonctionnement d'un module et est exprimé indépendamment des diverses typologies de systèmes photovoltaïques. Aussi appelé en anglais "module efficiency", le rendement module est le ratio de l'énergie générée par le module par l'énergie externe reçue. Cette notion évalue l'efficacité à transformer l'énergie des photons en énergie électrique. On note que l'efficacité est différente selon le périmètre d'évaluation retenu (rendement cellule, rendement système...). Le rendement module communiqué est mesuré dans les conditions standards¹.
- Masse spécifique par unité de puissance : Masse totale du module divisé par la puissance crête du module. La valeur communiquée dans cette étude est une moyenne des différentes valeurs annoncées par les principaux producteurs de modules photovoltaïques.
- Garantie du rendement supérieur à 80%: Représente la durée (en années) d'utilisation du module photovoltaïque maximale avant que son rendement n'atteigne la valeur limite de 80% du rendement initial. Cette valeur est un argument commercial de garantie de la qualité des modules.
- Garantie du rendement supérieur à 90%: Représente la durée (en années) d'utilisation du module photovoltaïque maximale avant que son rendement n'atteigne la valeur limite de 90% du rendement initial.
- Maturité de la technologie : Désigne le stade de développement de la technologie désignée.

		2 ^{ème} génération - Technologie couches minces					
		Silicium amorphe (a- Si)	CdTe	CIS / CIGS dont sous- familles	GaAs	Silicium Micro - morphe	
	Plage de rendement module	7 - 8 %	11%	7 - 13 %	18 - 25 %	7 - 8 %	
Ses	Puissance spécifique moyenne par unité de surface (Wc / m2)	76	77,5	150		205	
mance	Masse spécifique moyenne par unité de puissance (kg/Wc)	0,16	0,145	0,15			
rfori	Garantie du rendement supérieur à 80 % (années)	10	25	25	25	10	
Pe	Garantie du rendement supérieur à 90 % (années)		10	10	10		
	Maturité de la technologie	Commercial	Commercial	Commercial	En développement	En développement	

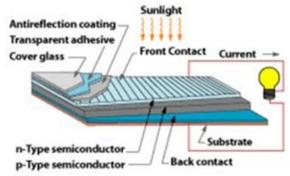
Source: www.photon.info.com, ADEME

Tableau 2 - Caractéristiques et performances des technologies en couches minces

		3 ^{ème} génération			
		Nanotubes	Cellules organiques	CPV Photovoltaïque concentré)	
	Plage de rendement module		1-5 %		
ses	Puissance spécifique moyenne par unité de surface (Wc / m2)		33		
mance	Masse spécifique moyenne par unité de puissance (kg/Wc)				
Perfor	Garantie du rendement supérieur à 80 % (années)				
Pe	Garantie du rendement supérieur à 90 % (années)				
	Maturité de la technologie	R&D	R&D	En développement	

Source: www.photon.info.com, ADEME

Tableau 3 - Caractéristiques et performances des technologies de 3ème génération


Compte tenu des évolutions des parts de marché, et des difficultés rencontrées actuellement par certains acteurs historiques de l'industrie solaire, la liste des principaux fournisseurs par technologie est susceptible de varier avec le temps. C'est à titre d'exemple le cas de Q-cells, leader historique du solaire PV, en faillite désormais.

COMPOSITION DES MODULES PHOTOVOLTAÏQUES

Les panneaux photovoltaïques, toutes technologies confondues sont principalement composés de verre et d'aluminium. Cependant, les panneaux photovoltaïques sont dans certains cas composés de composants stratégiques, toxiques ou à haute valeur ajoutée. Afin de comprendre les enjeux du recyclage des PV, il est donc nécessaire d'étudier la composition type d'un module PV par type de technologies.

Les tableaux ci-dessous (Tableau 4 à Tableau 11) donnent une composition moyenne pour chaque technologie de module photovoltaïque.

Les éléments de vocabulaire introduits dans ces tableaux sont précisés sur le schéma de la Figure 5.

Source: "Photovoltaics" The Encyclopedia of Earth, Maggie Surface, 2012
Figure 5 - Eléments constitutifs d'un panneau PV

<u>Point d'attention</u>: Les compositions données dans les tableaux ci-après sont basées sur les informations disponibles dans la littérature. Entre les différentes technologies étudiées, la segmentation (par élément, par composant, ...) n'est pas toujours homogène. Ainsi, le manque d'homogénéité entre les tableaux des différentes technologies est le reflet des segmentations effectuées dans la littérature. Ces données permettent néanmoins de disposer d'un point de repère pour chacune des technologies étudiées.

<u>Aide à la lecture des tableaux ci-après</u>: Dans_la 2ème colonne « Composants/Matériaux », figurent l'ensemble des matériaux possibles pour la fonction désignée dans la première colonne; dans la colonne « Composition du module-type sélectionné pour l'étude », figure l'élément principal dont le composant est constitué dans le cas d'application de l'étude utilisé pour les tableaux des compositions (Tableau 5, Tableau 9, Tableau 11).

		Technologie cristalline (mono et multi-cristallin)	
	Fonction	Composants / Matériaux : Champ des possibles	Composants / Matériaux : Composition du module type sélectionné pour l'étude
		Verre traité	·
	Couche de protection	Traitement anti-reflet: Teflon/ Acrylate/ multiester/ multicarbonate/ PIBS/ résine d'acryl/ Ta2O5 – pentoxyde de tantale/ TiO2 – Dioxyde de titane/ SiO – Monoxyde de silicium/ SiO2 – Dioxyde de silicium/ Si3N4 – Nitrure de Silicium	Verre
	Métaliseur supérieur	Lignes d'argent + Aluminium sérigraphiées sur la cellule / acier	Ag
	Encapsulant	Multimère Ethylène Vinyl Acetate (EVA) ou multiVinyl Butyrale / multiureéethane / Acrylate	EVA
z	Callula	Semi-conducteur supérieur: Silicium mono/multi-cristallin dopé au Phosphore	Si, B
CRISTALLIN	Cellule	Semi-conducteur Inférieur: Silicium mono/multi-cristallin dopé au Bore	Si, P
CRIS	Encapsulant	Multimère Ethylène Vinyl Acetate (EVA) ou multiVinyl Butyrale / multiuréethane / Acrylate	EVA
	BSF (Back Surface Field) / Métaliseur inférieur	Plaque d'aluminium ou lignes d'aluminium + Argent sérigraphiées sur la cellule	Ag
	Couche inférieure	Verre / Tedlar / résine d'acryle / multiester / Acrylate / multiester fluoriné	Tedlar
	Autres composants électroniques (diodes,	Multiester terephtalate (PET), multicarbonates, Argent (Ag), Cuivre (Cu), Etain (Sn), ignifuges bromés	Sn, Cu, Ag
	boitier de raccordement)	Ignifuges bromés: biphenyls multibrominés (PBBs) et diphényléthers multibrominés (PBDEs)	PBBs ou PBDEs
	Joints adhésifs	PIBS	Non détaillé
	Soudures (electronique)	Plomb	Pb
	Cadre	Aluminium (ALMgSiO5)	Al

Source : [2] revu et complété par RECORD / ENEA Consulting Tableau 4 - Détails de composants possibles de l'ensemble des couches d'un module PV cristallin

	Composition ma	ıssique type d'uı	n module cristall	lin
Eléments (composants à défaut de données)	% massique du module	Toxicité	Valeur	Disponibilité mondiale
Verre	74,15%	Inoffensif	Basse	Disponible en quantité
Al	10,30%	Inoffensif	Moyenne	Disponible en quantité
EVA	6,55%	Inoffensif	Basse	Disponible en quantité
Tedlar	3,60%	Toxique	Haute	Disponible en quantité
Si	3,48%	Inoffensif	Basse	Disponible en quantité
Joint adhésif	1,16%	Inoffensif	Basse	Disponible en quantité
Cu	0,57%	Inoffensif	Moyenne	Disponible en quantité
Sn	0,12%	Inoffensif	Moyenne	Disponible en quantité
Pb	0,07%	Toxique	Moyenne	Disponible en quantité
Ag	0,005%	Inoffensif	Haute	Disponible en quantité
В	trace	Dangereux en quantité	Moyenne	Rare
Chrome Hexavalent (Cr(VI))	trace	Toxique	Non disponible	Non disponible
P	trace	Inoffensif	Basse	Disponible en quantité
PBBs ou PBDEs	trace	Toxique	Non disponible	Non disponible

Source : [1] revu par RECORD / ENEA Consulting

Tableau 5 - Composition d'un module photovoltaïque cristallin type de 215 Wc et 22,4 kg, caractéristiques et proportion des composants

		Technologie en couches minces CdTe	
	Fonction	Composants / Matériaux : Champ des possibles	Composants / Matériaux : Composition du module type sélectionné pour l'étude
	Couche de protection	Verre traité avec revêtement anti-reflet / Teflon / Acrylate / Polyester / Polycarbonate	Verre
	TCO Supérieur (Transparent Conducteurs Oxides)	ITO (90% In2O3, 10% SnO2) / ZnO/AI	In ₂ O ₃ - SnO ₂
	Métalliseur	Mo, Ag, Al, CuSn	CuSn
	Encapsulant	Polymere Ethylen vinyl acetate (EVA) ou PolyVinyl Butyrale / Polyureethane / acrylates	EVA
o o	Cellule	Sulfide de Cadmium pulvérisé* sur du substrat de verre	CdS, substrat de verre
CdTe	Cellule	Tellurure de Cadmium pulvérisé* sur du substrat de verre	CdTe, substrat de verre
0	Encapsulant	Polymere Ethylen vinyl acetate (EVA) or PolyVinyl Butyrale / Polyureethane / acrylates	EVA
	TCO Inférieure (Transparent Conducteurs Oxides)	ITO (90% In2O3, 10% SnO2) ou ZnO2	In ₂ O ₃ - SnO ₂
	BSF (Back Surface Field) / Métaliseur inférieur	Molybdène, Al, Ag	Non détaillé
	Autres composants électroniques (diodes, boitier de raccordement)	Polyestère terephtalate (PET), polycarbonates, Argent (Ag), Cuivre (Cu), Etain (Sn), soudures (Plomb)	Non détaillé
		déposition du CdTe et du CdS: sublimation, transport par la vapeur, déposition chin déposition (utilisant une solution de HTeO3+), spray (utilisant du CdCl2)	nique en phase gazeuse, pulvérisation,

Source : [2] revu et complété par RECORD / ENEA Consulting Tableau 6 - Détails de composants possibles de l'ensemble des couches d'un module PV de type CdTe

	Composition massique type d'un module CdTe					
Eléments (composants à défaut de données)	% massique du module	Toxicité	Valeur	Disponibilité mondiale		
Substrat de verre	48,03%	Inoffensif	Basse	Disponible en quantité		
Verre supérieur	48,03%	Inoffensif	Basse	Disponible en quantité		
EVA	3,20%	Inoffensif	Basse	Disponible en quantité		
Cable	0,37%	Non applicable	Non applicable	Non applicable		
Boîte de raccordement	0,18%	Non applicable	Non applicable	Non applicable		
CdTe	0,12%	Toxique	Haute	Rare		
In ₂ O ₃ - SnO ₂	0,04%	Dangereux en quantité	Haute	Rare		
Métalliseurs	0,02%	Non applicable	Non applicable	Non applicable		
CdS	0,00%	Toxique	Haute	Disponible en quantité		

Source : [1] revu par RECORD / ENEA Consulting

Tableau 7 - Composition d'un module photovoltaïque en couches minces CdTe de 120*60 cm, caractéristiques et proportion des composants

		Technologie sur couche mince de silicium amorphe (a-Si)	
	Fonction	Composants / Matériaux : Champ des possibles	Composants / Matériaux : Composition du module type sélectionné pour l'étude
		Verre ou substrat de verre traité	Verre
	Couche de protection supérieure	Traitement anti-reflet:Teflon/Acrylate/ Polyester / Polycarbonate/PIBS/ résine d'acryl/ Ta2O5–pentoxyde de tantale / TiO2 – Dioxyde de titane /SiO –Monoxyde de silicium/SiO2–Dioxyde de silicium/Si3N4–Nitrure de Silicium	Résine d'acryl
	TCO Supérieur (Transparent Conducteurs Oxides)	CO Supérieur (Transparent ITO (90% In2O3 10% SnO2) / ZnO/AL	
	Métalliseur	Molybdène	Mo
a-Si	Encapsulant	Polymere Ethylen vinyl acetate (EVA) or PolyVinyl Butyrale / Polyureethane / acrylates	EVA
ф	Cellule	a-Si:H (silicium hydrogèné) dopé au Phosphore	Si-H, P
	Cellule	a-Si:H (silicium hydrogèné) dopé au Bore	Si-H, B
	TCO Inférieure (Transparent Conducteurs Oxides)	ITO (90% In2O3, 10% SnO2) / ZnO/AI	ZnO2
	Métalliseur	Plaque d'aluminium ou Molybdène	Bandes d'aluminium
	Encapsulant	Polymere Ethylen vinyl acetate (EVA) or PolyVinyl Butyrale / Polyureethane / acrylates	EVA
	Autres composants électroniques (diodes, boitier de raccordement)	ectroniques (diodes, (Cu) Etain (Sp.) Soudures (Pb.)	
	Joint adhésif	Colle haute température	Non détaillé

Source : [2] revu et complété par RECORD / ENEA Consulting Tableau 8 - Détails de composants possibles de l'ensemble des couches d'un module PV cristallin amorphe (a-Si)

Composi	tion massique ty	pe d'un module	de silicium amo	orphe (a-Si)
Eléments (composants à défaut de données)	% massique du module	Toxicité	Valeur	Disponibilité mondiale
Verre	86,08%	Inoffensif	Basse	Disponible en quantité
EVA	7,04%	Inoffensif	Basse	Disponible en quantité
Мо	5,31%	Dangereux en quantité	Moyenne	Disponible en quantité
Cable	0,99%	Non applicable	Non applicable	Non applicable
CH2 CHCOOH - Résine d'acryl	0,47%	Non disponible	Non disponible	Non disponible
Bandes d'Aluminium	0,02%	Inoffensif	Moyenne	Disponible en quantité
SnO2	0,02%	Inoffensif	Moyenne	Disponible en quantité
Colle haute température	0,02%	Non applicable	Non applicable	Non applicable
ZnO2	0,02%	Dangereux en quantité	Haute	Rare
Al	0,01%	Inoffensif	Moyenne	Disponible en quantité
Si-H	0,01%	Inoffensif	Basse	Disponible en quantité
В	4,45E-11	Dangereux en quantité	Moyenne	Rare
Р	2,99E-13	Inoffensif	Basse	Disponible en quantité

Source : [2] revu par RECORD / ENEA Consulting

Tableau 9 - Composition d'un module photovoltaïque en couches minces de silicium amorphe (a-Si) de 14 Wc et 0,72 m², caractéristiques et proportion des composants

		Technologie en couche mince CIGS	
Fo	nction	Composants / Matériaux : Champ des possibles	Composants / Matériaux : Composition du module type sélectionné pour l'étude
Couche de p	rotection	Verre ou substrat de verre (teflon / polyestère / acrylate / polycarbonate) traité avec un revêtement anti-reflet	Verre
supérieure		Revêtement anti-reflet : résine d'acrylate / Nitrure de Silicium (Si3N4)	Si3N4
TCO Supérie Conducteurs	eur (Transparent Oxides)	ITO (90% In2O3, 10% SnO2) ou ZnO2	In ₂ O ₃ - SnO ₂
Métalliseur	,	Molybdène	Мо
Encapsulant	Polymere Ethylen vinyl acetate (EVA) or PolyVinyl Butyrale /		EVA
Cellule		CdS pulvérisé sur du substrat de verre	CdS, substrat de verre
TOO L		CIGS pulvérisé sur du substrat de verre	Cu, In, Ga, Se, substrat de verre
TCO Inférieu Conducteurs	re (Transparent Oxides)	ITO (90% In2O3, 10% SnO2) ou ZnO2	ZnO ₂
BSF (Back Métaliseur in	Surface Field) / nférieur	Molybdène ou Plaque d'aluminium	Мо
Encapsulant		Polymere Ethylen vinyl acetate (EVA) or PolyVinyl Butyrale / Polyureethane / acrylates	EVA
Autres comp électronique boitier de ra	s (diodes,	Polyestère terephtalate (PET), polycarbonates, Argent (Ag), Cuivre (Cu), Etain (Sn)	Non détaillé
Soudures (e	ectronique)	Plomb	Al
Joints adhés	ifs	PIBS	PIBS - Polyisobutylenes
Etiquette		Polyester	Polyester
Cadre		Aluminium	Al

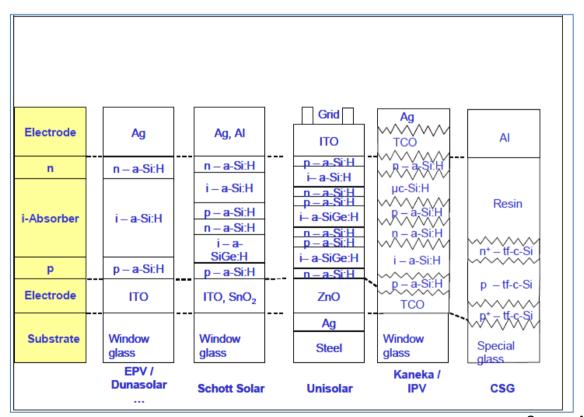
Source : [2] revu et complété par RECORD / ENEA Consulting Tableau 10 - Détails de composants possibles de l'ensemble des couches d'un module PV de type CIGS

	Composition n	nassique type d'	un module CIGS	
Eléments (composants à défaut de données)	% massique du module	Toxicité	Valeur	Disponibilité mondiale
Substrat de verre	40,05%	Inoffensif	Basse	Disponible en quantité
Verre	40,05%	Inoffensif	Basse	Disponible en quantité
Cadre en aluminium	10,68%	Inoffensif	Moyenne	Disponible en quantité
EVA	3,74%	Inoffensif	Basse	Disponible en quantité
PIBS (Polyisobutylenes)	2,67%	Non disponible	Non disponible	Non disponible
Cable (polymères et cuivre)	1,60%	Non applicable	Non applicable	Non applicable
Boîter de raccordement	1,07%	Non applicable	Non applicable	Non applicable
Bande adhésive	0,53%	Inoffensif	Basse	Disponible en quantité
CulnGaSe (Cu(ln,Ga)(S,Se)2)	0,05%	Dangereux en quantité	Haute	Rare
ZnO ₂	0,03%	Inoffensif	Moyenne	Disponible en quantité
Мо	0,03%	Dangereux en quantité	Moyenne	Disponible en quantité
Selenium	0,03%	Dangereux en quantité	Haute	Rare
ІТО	0,02%	Dangereux en quantité	Haute	Rare
Polyester	0,01%	Non disponible	Non disponible	Non disponible
CdS	0,00%	Toxique	Haute	Disponible en quantité
Si3N4	Trace	Inoffensif	Moyenne	Disponible en quantité
Substrat de polyimide	Trace	Non disponible	Non disponible	Non disponible
Revêtement anti-reflets	Trace	Inoffensif	Moyenne	Disponible en quantité

Source : [2] revu par RECORD / ENEA Consulting

Tableau 11 - Composition d'un module photovoltaïque en couches minces CIGS à 110 Wc/m², caractéristiques et proportion des composants

Diversité des compositions d'un fabricant à l'autre


D'une manière générale, ces données de composition des panneaux sont disparates en fonction des technologies, des fournisseurs et des gammes de produits. En ce sens, elles ne sont pas applicables à tous les panneaux photovoltaïques directement, mais permettent, dans le cadre de cette étude, de disposer de compositions réalistes et représentatives, utilisées par la suite pour certains bilans matières.

La technologie photovoltaïque est aujourd'hui encore en plein développement. Alors que de nombreux programmes de recherche travaillent à réduire les coûts de production, les quantités de ressources stratégiques et la consommation d'énergie à la production, trois tendances majeures se profilent :

- une diminution significative de l'épaisseur des wafers de silicium dans les technologies cristallines, permettant une réduction des coûts de production;
- une importante diversité des compositions et structures des cellules photovoltaïques des modules en couches minces. La Figure 6 illustre la diversité (en 2007) des structures d'une technologie en silicium amorphe;
- une grande diversité de composition du BSF (Back Surface Field), des métalliseurs, et du revêtement anti-reflet selon les différents fabricants et selon les régions (Europe, USA et Asie).

Cette diversité implique que :

- les procédés de recyclage, plus ou moins efficaces selon les technologies photovoltaïques recyclées, ont tout intérêt à être adaptables à un large panel de technologies;
- les matières premières issues du recyclage peuvent fluctuer significativement selon le fabricant et la provenance du gisement.

Source : [2]

Figure 6 - Structures variées des cellules photovoltaïques de silicium amorphe selon différents fabricants

CARACTERISATION DES COMPOSANTS PAR TYPE DE TECHNOLOGIE

La caractérisation de l'ensemble des composants des modules photovoltaïques permet de mettre en évidence les enjeux du recyclage des panneaux photovoltaïques.

Dans les tableaux récapitulatifs précédents (Tableau 4 à Tableau 11) sont indiquées la toxicité, la disponibilité sur le marché et la valeur sur le marché des composants.

Définition des termes

Toxicité

La plupart des modules photovoltaïques actuels comportent des composants toxiques tels que le plomb (contenu dans les circuits du boîtier de raccordement), le mercure, le cadmium (semi-conducteur des modules de type CdTe), le chrome hexavalent (utilisé comme revêtement), les polybromobiphényles (PBB) et polybromodiphényléthers (PBDE) (utilisés comme produits ignifuges), et les composés fluorés (dans le plastique de la couche inférieure notamment). La liste exhaustive des composés toxiques pouvant être contenus dans les modules photovoltaïques et leur potentiel impact sur la santé sont explicités dans le rapport annuel de la SVTC 2009 [4] ainsi que dans la publication du *National PV EHS Assistance Center* de la BNL (Brookhaven National Laboratory) [5].

Les limites maximales en concentration de certains de ces composés, spécifiques au cadre réglementaire du pays de production et d'installation, s'appliquent au produit mis sur le marché autant qu'au déchet issu du même produit traité par les centres spécialisés. En effet, la toxicité d'un composant dans un produit en cours d'utilisation et dans un produit en fin de vie est considérée égale. Ainsi le recyclage de produits comprenant des composants toxiques implique des mesures de sécurité identiques à celles de la production et une détoxification. La notion de toxicité est alors déterminante dans l'élaboration du procédé de recyclage du produit en fin de vie.

Les composants toxiques sont encadrés par la directive RoHS, appliquée au sein de l'Union Européenne. Il convient toutefois de noter que la dernière révision de la RoHS n'inclut pas les modules photovoltaïques, en tant que produit, ces modules figurant explicitement sur la liste d'exemption de la RoHS.

En revanche, une fois recyclées, les fractions purifiées issues du recyclage des modules sont soumises à la directive RoHS, qui impose des limites en teneur de certains composants présents dans les modules photovoltaïques.

Note : La toxicité des modules en couches minces de type CdTe fait encore aujourd'hui l'objet de débats. Le Wuppertal Institute, parmi d'autres, a mené une étude sur l'impact environnemental des modules CdTe en Août 2010 en comparant les résultats des tests provenant de laboratoires variés. Les résultats de la comparaison sont présentés dans « Appraisal of Laboratory Analyses Conducted on CdTe Photovoltaic Modules »[6].

Disponibilité

Les données sur la disponibilité des composants sur le marché [2] sont valables pour l'année de la source. Des projections sur la disponibilité de certains métaux stratégiques sont disponibles dans la publication de l'UNEP [2].

Prio	Priorité de recyclage des métaux stratégiques selon leur disponibilité et taux d'utilisation					
Déla	nis	Caractéristique	Métal			
Court Terme	5 années à venir	Rapide croissance de la demande; Tensions importantes d'approvionnement; Restrictions de recyclage modérées.	Tellure, Indium, Gallium			
Moyen Terme	Jusqu'à 2020	Rapide croissance de la demande; Restrictions de recyclage importantes. OU Tensions d'approvisionnement modérées; Restrictions de recyclage modérées.	Terres rares (Lithium, Tantale) Palladium, Platine, Ruthenium			
Long Terme	Jusqu'à 2050	Croissance modérée de la demande; Tensions d'approvisionnement modérées; Restrictions modérées de recyclage.	Germanium, Cobalt			

Source : [2]

Tableau 12 - Priorisation du recyclage des métaux stratégiques selon la criticité de leur disponibilité

On note que l'extraction d'une matière première est toujours associée à un impact environnemental important. Cet impact peut être évalué par l'indice TMR (Total Material Requirement), indiquant la masse primaire de ressources requises et ses flux cachés. Les valeurs pour les différentes matières premières ont été évaluées par Halada et al (2001). Plus les matériaux sont stratégiques, plus l'indice TMR est élevé [3]. L'évaluation de l'impact environnemental de l'extraction des matières premières peut être comparée aux impacts environnementaux du procédé de recyclage des mêmes matériaux.

Elément	Production mondiale 2007 (tonnes/an)	TMR (tonnes/tonne)
Cuivre	15 600 000	300
Cadmium	19 900	2 000
Indium	510	200 000
Sélénium	1 550	1 000
Tellure	135	270 000

Source: [3]

Tableau 13 - Production mondiale en 2007 des différents matériaux composant les modules PV et leur TMR

Séparabilité

La séparabilité d'un composant, d'après l'étude réalisée et les retours d'expérience de recycleurs et les publications sur les procédés de recyclages de la bibliographie, peut être définie comme suit :

- Une séparabilité difficile d'un composant est associée à des moyens (technologiques, chimiques ou apports énergétiques) à mettre en œuvre importants pour la séparation des composants du module.
- Une **mauvaise séparabilité** d'un composant est associée à un taux de recyclage faible de ce composant, malgré la mobilisation de moyens importants pour la séparation.
- Une bonne séparabilité est associée à une séparation simple et présentant de bons taux de recyclage.

Valeur sur le marché

Les valeurs sur le marché des différents composants correspondent à la valeur des composants recyclés au niveau de pureté d'origine. La valeur des composants recyclés mais non purifiés est basée sur le prix du marché du composant ayant le plus de valeur (en cas de mélange), minorée du coût de recyclage ou de re-purification du composant. Les prix de revente des produits du recyclage sont extrêmement variables selon les pays et l'année.

Ordre de grandeur des prix de revente sur le marché des éléments contenus dans les modules recyclés			Prix sur le marché des éléments neufs en 2010
Aluminium	€/tonne	900	1 771
Plastique		Quasi nul	Variable

Ordre de grandeur des prix de revente sur le marché des éléments contenus dans les modules recyclés			Prix sur le marché des éléments neufs en 2010
Silicium solaire (So-Si)	€/kg	14,5 à 15 *	15,5 à 17
Verre	€/tonne	50 à 60	Variable
Argent	€/tonne	Non pertinent	500 000
Cadmium	€/tonne	Non pertinent	3 003
Etain	€/tonne	Non pertinent	18 318
Gallium	€/tonne	Non pertinent	462 000
Germanium	€/tonne	Non pertinent	446 600
Indium	€/tonne	Non pertinent	435 050
Plomb	€/tonne	Non pertinent	1 853
Sélénium	€/tonne	Non pertinent	64 303
Tellure	€/tonne	Non pertinent	169 400

Source : Interviews variées d'acteurs du recyclage et GlobalData, US Geological Survey, 2010 pour les données sur les prix du marché neuf en 2010. Conversion du Dollar à l'Euro: 1\$ = 0,77€ Tableau 14 - Prix des composants sur le marché en 2010 et prix de revente issus du recyclage

On note que les recycleurs, la plupart du temps, revendent les matières premières recyclées encore impures ou sous une forme différente de la forme requise pour la production d'un nouveau produit. Le prix de vente d'un tel produit (par exemple des cadres d'aluminium tels qu'à la sortie de l'étape de démantèlement) est égal au prix du marché, duquel est déduit le coût de recyclage de l'aluminium.

Le verre

Le verre étant le principal composant d'un module photovoltaïque (> 75% massique), la problématique du recyclage des panneaux photovoltaïques rejoint celle de l'industrie du recyclage du verre. Les différentes caractéristiques du verre utilisé pour les panneaux PV sont les suivantes :

- Verre trempé ou non-trempé (pour obtenir une résistance au choc importante)
- Verre à haute émissivité (ou basse émissivité) pour conserver la chaleur
- Verre traité par un revêtement antireflet
- Verre plat ou arrondi fin/épais

La segmentation par type de verre conditionne la nature du recyclage associé.

Le Tableau 15 classifie les débouchés industriels associés au niveau de pureté des calcins de verre issus du recyclage. A titre indicatif, les procédés chimiques de séparation du verre permettent d'atteindre des niveaux de pureté suffisant pour revendre les calcins à l'industrie du verre plat, alors que les résidus des procédés de recyclage par broyage des modules cristallins sont destinés à l'industrie de la laine de verre ou au domaine du BTP.

Qualité et débouchés des calcins de verre selon leur provenance						
Source du verre	Niveau de qualité	Application / Débouchés				
Verre flotté propre ; Verre laminé (déchets issus de la production)	Qualité la meilleure du marché	Applications spécifiques de l'industrie du verre plat				
Verre plat mélangé; Verre de pare brise	Bonne qualité (metaux: max 7 ppm, c.s.p: max 15 ppm)	Industrie du verre de conditionnement				
Verre plat mélangé; Verre de pare brise; Verre de modules PV	Qualité moyenne	Industrie de la laine de verre (isolation)				
Verre plat contaminé; contaminants inséparables	Mauvaise qualité	Construction de routes, industrie de l'abrasif (pour grenaillage), enfouissement				

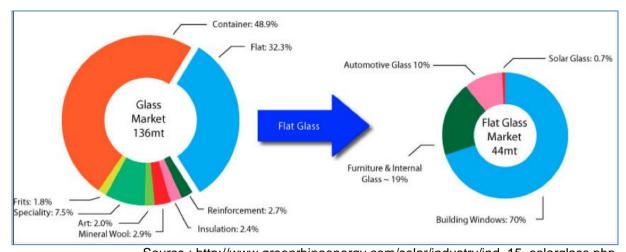
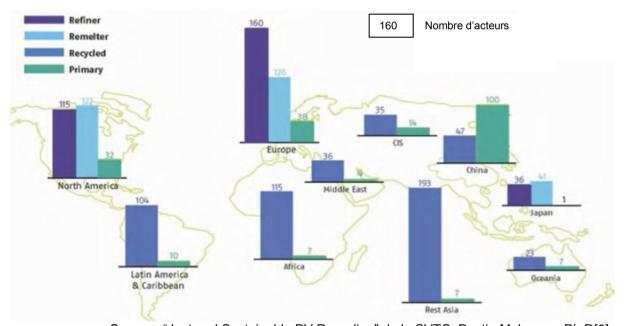

Source: Reiling, Roland Pohl, PV CYCLE Conference, Berlin 2010

Tableau 15 - Qualité du verre recyclé et débouchés industriels associés

La Figure 7 montre la segmentation du marché du verre produit dans le Monde par classes d'applications en 2007. L'industrie du verre plat représente 32,3% du marché mondial alors que les industries de la laine de verre et du BTP ne représentent qu'une partie mineure, inférieure à 5%. La valorisation des calcins de verre issus du procédé de délaminage des modules photovoltaïques dans

^{*} Le prix du silicium était environ égal à 150€/kg il y a quelques années. La chute importante des prix (divisé par 10) peut s'expliquer par des mécanismes de spéculation ainsi que la délocalisation massive de production de silicium solaire en Chine.


l'industrie du verre plat permet de maximiser les prix de revente (en raison de la qualité supérieure) et de s'assurer des débouchés plus larges.

Source : http://www.greenrhinoenergy.com/solar/industry/ind_15_solarglass.php
Figure 7 - Segmentation du marché du verre selon ses applications industrielles en 2007, focus sur l'industrie du verre plat

L'aluminium

L'aluminium est largement recyclé de nos jours et, comme le montre la Figure 8, de nombreux recycleurs déjà existants en 2004 structurent le marché de son recyclage.

Source : "Just and Sustainable PV Recycling" de la SVTC, Dustin Mulvaney, Ph.D[9]. Figure 8 - Répartition des recycleurs d'aluminium dans le monde en 2004

Le silicium

Le silicium représente la partie la plus importante du coût des modules photovoltaïques cristallins car sa production et purification au niveau de pureté photovoltaïque est particulièrement énergivore :

- Le silicium représente 65% du coût de la cellule [10]
- La cellule représente 60% du coût du module [10]

Le silicium (Si) est produit par réduction de la silice (SiO2) avec de l'oxygène comme coproduit. $SiO_2 \rightarrow Si + O_2$

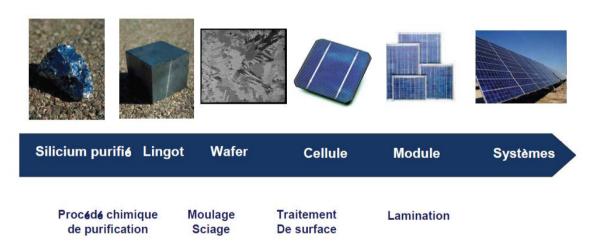
Pureté du silicium

Le niveau de pureté du silicium dépend du pourcentage d'oxygène et d'impuretés variées présentes dans la matière. Le niveau de pureté est gradué sur une échelle de 1 à 9 (1N à 9N). Le nombre de « N » définit le nombre 9 dans le pourcentage de pureté (exemple 5N désigne un silicium à 99,999% de pureté).

Le silicium a différentes applications selon son niveau de pureté :

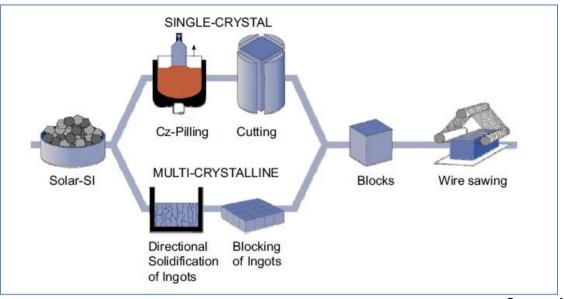
- Le silicium dit métallurgique, d'une qualité basse (typiquement 2N à 4N), utilisé comme alliage, principalement avec l'aluminium. Cette application concerne 55% du silicium mondial
- Le silicium photovoltaïque, d'une qualité supérieure, de l'ordre de 4N à 7N
- Le silicium semi-conducteur, d'une qualité extrême (> 9N voire 10N), utilisé en électronique

Il y a dix ans la qualité maximale atteinte était de 4N, 6N en 2006, et 9N à 10N aujourd'hui. [11]

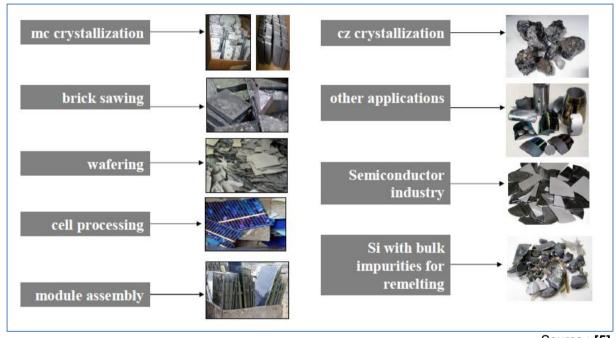

Le silicium solaire subit des traitements spécifiques pour pouvoir être utilisé dans une cellule, notamment :

- La diffusion du dopant
- La séparation des jonctions parasites
- Le dépôt chimique en phase vapeur amélioré à l'aide d'un plasma à micro-ondes : PE CVD SiNx (Plasma Enhanced Chemical Vapor Deposition of low stress Silicon Nitride - SiNx)
- La sérigraphie

Ces traitements complexes contribuent à atténuer le niveau de pureté du silicium recyclé et à la complexité de la re-purification du silicium recyclé.


Formes variées du silicium et production

Le silicium photovoltaïque connaît plusieurs formes au cours de la production avant d'arriver à l'état de wafer, utilisé dans la cellule.


Source : ARMINES, Isabelle Blanc, Projet ESPACE Figure 9 - Etapes de la production d'un module photovoltaïque cristallin

Le silicium brut de qualité solaire (appelé SoG-Si) est cristallisé en lingot. Le silicium est alors multicristallin. Dans le cas d'une production de modules mono-cristallin, le lingot est traité selon le procédé Czochralski pour obtenir un lingot de silicium mono-cristallin. Les bords du lingot sont sciés puis nettoyés. Le lingot peut alors être découpé en « wafer » (aussi appelé gaufre). Les wafers sont à leur tour traités et dopés pour ensuite être utilisés pour la production des cellules photovoltaïques.

Source : [12]

Figure 10 - Etapes du procédé de fabrication de wafers mono et multi-cristallins

Source : [5] Figure 11 - Sources secondaires de silicium cristallin

Métaux stratégiques

Les cellules photovoltaïques contiennent peu de métaux stratégiques et la proportion est à la baisse. Une cellule cristalline standard contient entre 0,004 % et 0,006 % en masse d'argent [6]. Les autres métaux stratégiques contenus dans les cellules photovoltaïques sont résumés dans le Tableau 16. Les pourcentages indiqués représentent des valeurs moyennes.

Pourcentages massiques de					
métaux stratégiques dans un					
module photovoltaïque					
	Ag	0,005%			
c-Si	Р	Trace			
	Во	Trace			
CdTe	TCO- SnO2	0,044%			
	CdS	0,003%			
	CdTe	0,115%			
a-Si	SnO2	0,02%			
	ITO	0,02%			
a-Si	Р%	2,99E-09			
	Bo %	4,45E-05			
	Мо	0,0267%			
	CulnGaSe	0,0534%			
CiGS	Se	0,0267%			
CIGO	ZnO	0,0320%			
	CdS	0,0011%			
	ITO	0,0200%			

Source: [1] et revu par RECORD / ENEA Consulting

Tableau 16 - Pourcentages massiques de métaux stratégiques dans un module photovoltaïque

BSF - Back Surface Field

Majoritairement composé de Tedlar pour ses propriétés isolantes, c'est un produit dérivé de l'industrie pétrolière.

Encapsulant

L'encapsulant le plus souvent utilisé est l'EVA (Ethylène Acétate Vinyle). L'EVA est un polymère thermoplastique utilisé dans un panel varié d'applications :

- comme films étirables, gants souples et semelles de chaussure pour sa capacité à absorber les chocs;
- comme colle thermofusible (colles « hot melt ») ou encapsulant dans la production de panneaux photovoltaïques car il sait garder les mêmes propriétés adhésives sur une longue durée et résiste bien à l'exposition au soleil, aux changements de conditions de pression et de température.

C'est l'encapsulant qui présente la principale difficulté technique pour le recyclage des modules photovoltaïques, en raison de sa forte résistance aux températures élevées et aux procédés mécaniques. Il existe aujourd'hui des encapsulants moins résistants facilitant le recyclage des cellules photovoltaïques, mais leurs performances dans le temps restent à démontrer.

1.4 Eléments de marché

Segmentation du marché photovoltaïque

L'étude de marché menée dans le cadre de cette étude consiste en l'évaluation chiffrée des capacités (en MWc) de modules photovoltaïques :

- produites et installées
- historiques et prévisionnelles
- pour 3 périmètres géographiques distincts (France, Europe, Monde)
- par typologie de technologie
- par type d'utilisation : résidentielle ou professionnelle.

METHODOLOGIE D'ANALYSE DU MARCHE PHOTOVOLTAÏQUE

Capacité de production, puissance produite, installée, connectée

Afin de quantifier la taille du marché photovoltaïque mondial, quatre notions peuvent être employées. De la plus large à la plus restrictive, il s'agit de :

- La capacité de production de l'ensemble des fabricants de modules, exprimée en MWc. Elle correspond à la puissance que peuvent potentiellement produire l'ensemble des producteurs si toutes les installations fonctionnaient à leur débit nominal.
- La **puissance produite** par l'ensemble des fabricants de modules, exprimée en MWc. Elle correspond à la puissance réellement produite, et est donc inférieure à la capacité de production (traduction de la surcapacité de production).
- La **puissance installée**, exprimée en MWc. Elle correspond à la puissance réellement installée, qui peut différer de la puissance produite via des stocks et pertes. La puissance installée est généralement inférieure à la puissance produite.
- La puissance connectée au réseau, exprimée en MWc. Elle correspond à la puissance réellement reliée au réseau, au sein de la puissance installée.

<u>Point d'attention</u>: Selon les sources et les méthodes d'évaluation, le vocable de marché ne fait pas toujours référence à la même notion parmi les quatre décrites ci-dessus, ce qui implique une nécessaire prudence dans l'analyse des chiffres, et dans leurs éventuelles comparaisons.

Capacité annuelle et capacité cumulée

Le marché photovoltaïque peut être évalué annuellement en prenant en compte les capacités arrivées sur le marché entre le 1 er janvier et le 31 décembre. Cette valeur permet d'évaluer les fluctuations et tendances à court terme du marché photovoltaïque. Cependant, les installations photovoltaïques ayant une durée de vie estimée à plus de 25 ans, il est alors pertinent de prendre en compte les quantités cumulées de modules photovoltaïques mises sur le marché, en particulier dans le cadre de l'évaluation des volumes de déchets prévisionnels. Ces données sur le marché photovoltaïque servent à établir un modèle prévisionnel aussi réaliste que possible des quantités de modules à recycler, de 2012 à 2045.

Segmentation géographique: Marché mondial, européen et français

Au cours de l'étude de marché l'ensemble des données sont déclinées pour les trois périmètres géographiques suivants :

- Monde
- Europe (Union Européenne + Suisse)
- France

Segmentation par types de technologies

L'analyse des capacités segmentées par typologie repose sur la répartition européenne des technologies utilisées regroupées en cinq technologies :

- Technologie cristalline (mono et multi-cristalline) : c-Si
- Technologie en couches minces de type CdTe : CdTe

- Technologie en couches minces de type CIGS/CIS : CIGS
- Technologie en couches minces de silicium amorphe : a-Si
- Autres

Cette segmentation est particulièrement intéressante pour l'évaluation de la nature des matériaux potentiellement recyclables.

Segmentation par types d'application des systèmes photovoltaïques

L'analyse des capacités par types d'application se traduit par la segmentation du marché installé en :

- Marché résidentiel : caractérisé par une puissance des systèmes inférieure à 3kWc [14], utilisés directement par des particuliers pour des applications résidentielles.
- Marché professionnel : caractérisé par une puissance des systèmes supérieure. Ce champ d'application concerne principalement les toitures non résidentielles et les fermes solaires.

Cette segmentation est intéressante pour :

- Caractériser le type de collecte optimum des modules en fin de vie, car selon le type d'utilisateur final d'un module, la collecte peut être organisée de manières variées (points d'enlèvement, points de collecte chez les distributeurs, ESS...).
- Estimer avec plus de précision les taux de collecte des modules en fin de vie. Les contrats d'installation des systèmes photovoltaïques à grande échelle incluant la désinstallation (et parfois l'acheminement des modules en fin de vie vers le centre de recyclage), le taux de collecte auprès du marché professionnel est plus élevé que celui du marché résidentiel, où l'acheminement du panneau vers un point de collecte, à défaut d'un contrat, dépend directement de la volonté d'un particulier. Il est aussi important de noter que la tendance actuelle d'intégrer les panneaux photovoltaïques à des surfaces d'utilité diverse (toits, mûrs, etc...) ne favorise pas la collecte. En effet, une fois arrivé en fin de vie, le module photovoltaïque conserve sa fonction secondaire (ex : étanchéité), et ne peut alors pas être aisément démantelé.

MARCHE PHOTOVOLTAÏQUE MONDIAL

Capacité mondiale installée

Evolution temporelle et prévisions

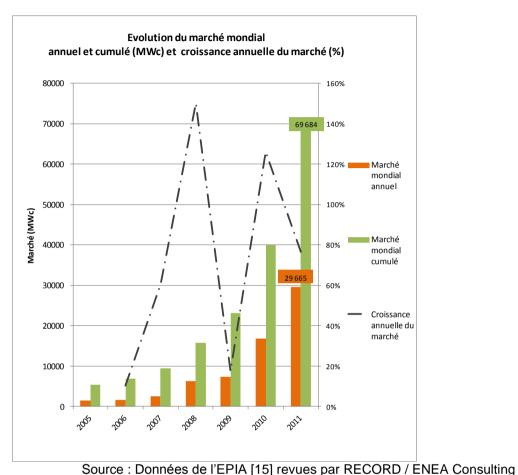
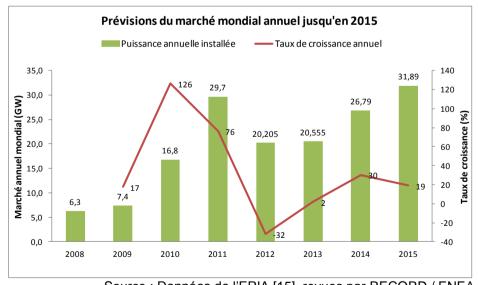
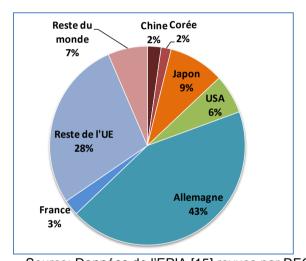



Figure 12 - Evolution du marché mondial annuel et cumulé (MWc) et croissance annuelle du marché (%)

Source : Données de l'EPIA [15], revues par RECORD / ENEA Consulting Figure 13 - Prévisions du marché mondial annuel jusqu'en 2015


Soutenue en 2007 et 2008, la croissance mondiale du marché PV a connu un premier coup d'arrêt en 2009, puis un second en 2011. Compte tenu des différences observées a posteriori entre les prévisions passées et les capacités réellement atteintes, les prévisions de capacité doivent être analysées avec prudence. Cependant, le marché photovoltaïque étant en pleine expansion, une tendance de croissance est à prévoir jusqu'en 2015. Ce phénomène de croissance est notamment dû:

- à l'existence d'un marché potentiel encore inexploité, notamment dans certains pays en développement, mais qui pourrait être freiné par la mise en place d'un marché de seconde main (ce dernier décalant dans le temps l'étape de recyclage).
- au développement constant des technologies photovoltaïques, entraînant la baisse des coûts de production, des consommations en matières premières et à l'augmentation des performances.

Les deux principaux facteurs d'influence de la croissance du marché annuel sont les systèmes de subventions mise en œuvre par les différents Etats et les efforts de réduction des coûts de production et d'installation.

Segmentation géographique

Le marché photovoltaïque bien que largement concentré en Europe (Figure 14) a profondément muté avec la croissance très rapide de la capacité de production de modules photovoltaïques de pays asiatiques tels que la Chine (Figure 18).

Source: Données de l'EPIA [15] revues par RECORD / ENEA Consulting Figure 14 - Segmentation géographique par pays des puissances installées en %MWc (cumulé jusqu'en 2010)

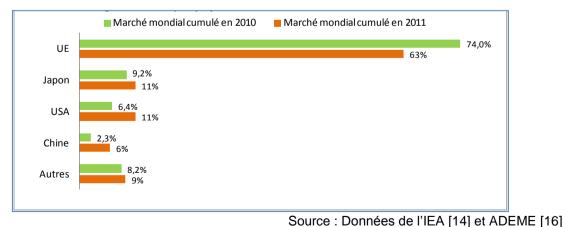


Figure 15 - Segmentation par pays des puissances installées cumulées en %MWc en 2010 et

Segmentation par type d'application

Les tendances sur les types d'application (résidentielle ou professionnelle) des systèmes photovoltaïques sont pour l'ensemble des pays concernés par l'étude très prononcées (une des applications étant toujours largement majoritaire). Ce phénomène peut s'expliquer par un système de subvention des installations photovoltaïques propres à chaque pays, qui avantage plus ou moins un type d'application particulier. La croissance du marché photovoltaïque étant liée aux politiques de soutien de la filière, ces chiffres peuvent être considérés comme directement reliés aux mécanismes de subvention. Globalement, le marché domestique pour des applications résidentielles capte la majorité du marché mondial. Cependant, certains pays d'Asie (notamment la Corée, le Japon et la Chine) et d'Europe (République Tchèque) font exception à cette tendance [15].

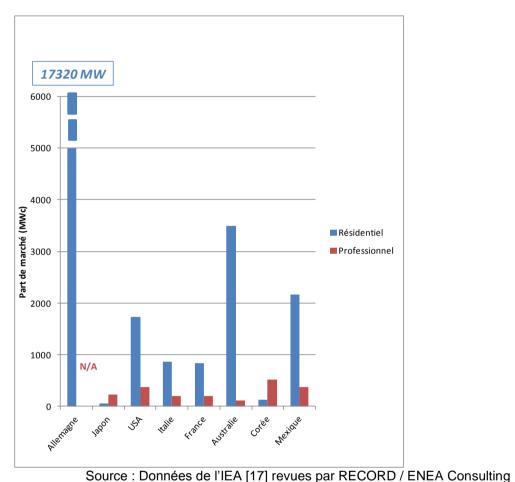
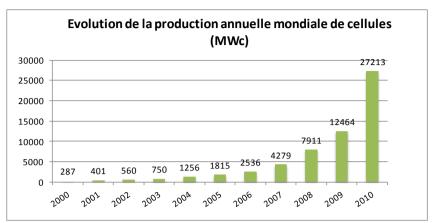
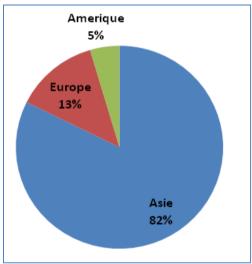
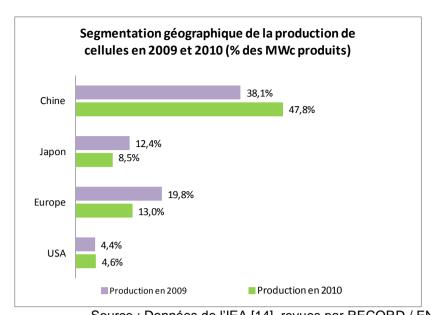



Figure 16 - Segmentation par type d'utilisateur du marché cumulé connecté au réseau de certains pays adhérents de l'IEA en 2010 (puissances connectées)

Production et capacité de production mondiale


Evolution temporelle et prévisions de la production mondiale


Source : Données de Photon International, Mars 2011 [18], revues par RECORD / ENEA Consulting Figure 17 - Evolution de la production mondiale de cellules (MWc)

Segmentation géographique de la production mondiale selon les étapes de production

La Figure 18 montre qu'une très large majorité des cellules photovoltaïques sont fabriquées en Asie (notamment en Chine, au Japon, à Singapour, en Malaisie et en Corée du Sud).

Source : Données de Photon International, Mars 2011 [18], revues par RECORD / ENEA Consulting Figure 18 - Segmentation de la production mondiale de cellules en 2010 par continent (% des MWc produits)

Source : Données de l'IEA [14], revues par RECORD / ENEA Consulting Figure 19 - Segmentation géographique de la production annuelle de cellules en 2009 et 2010 (% des MWc produits)

Les chiffres présentés en Figure 20 montrent avec plus de précision la répartition des activités des différents pays sur la chaîne de valeur d'un module photovoltaïque. Les phases de production de la cellule et de préparation du silicium solaire (sous forme de wafers) sont dissociées. Par ailleurs, pour de nombreux fabricants, la fabrication de la cellule est sous-traitée. Ainsi, la part de la production de chacun des pays varie selon l'étape de la production qui la concerne :

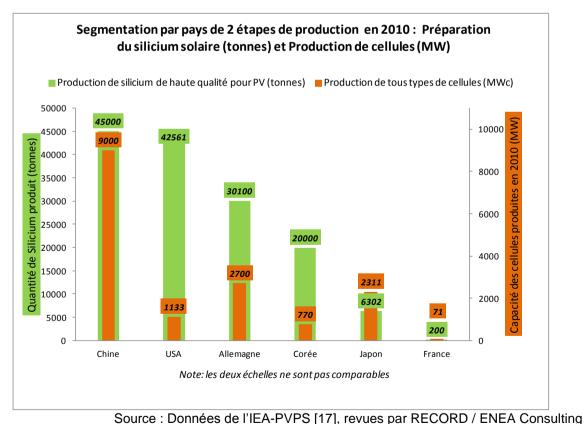
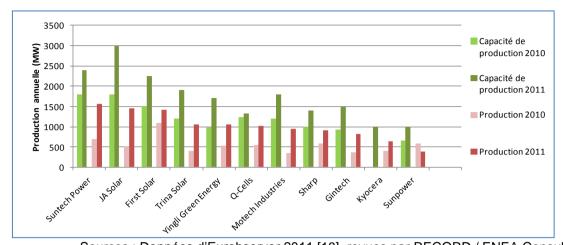
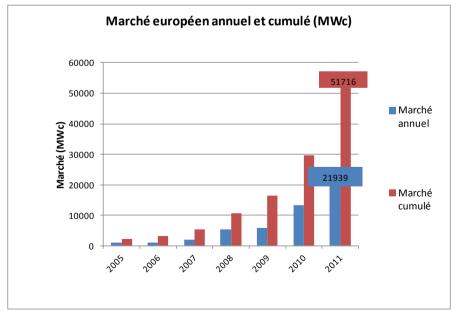



Figure 20 - Segmentation par pays de deux étapes de production en 2010 : Préparation du silicium solaire (tonnes) et production de cellules (MW)

On constate que:

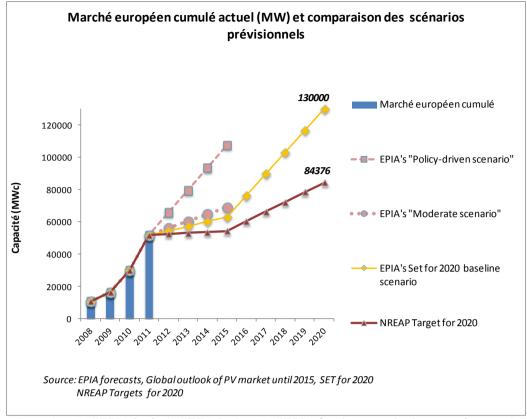
- La Chine est leader en production de cellules
- La Chine est leader en production de matières premières
- Les USA sont aussi largement engagés sur le marché des matières premières

Comparaison de la production annuelle avec la capacité installée de production pour quelques uns des plus grands fabricants de modules photovoltaïques


Sources : Données d'Eurobserver 2011 [18], revues par RECORD / ENEA Consulting Figure 21 - Evolution de la capacité installée et de la production annuelle sur 2010-2011 des principaux fabricants (MW)

MARCHE PHOTOVOLTAÏQUE EUROPEEN

Le marché photovoltaïque européen se caractérise par une forte dynamique de recherche et une politique volontariste (via un soutien réglementaire et financier).


L'Europe est aussi le cœur du déploiement de la filière de recyclage des modules photovoltaïques.

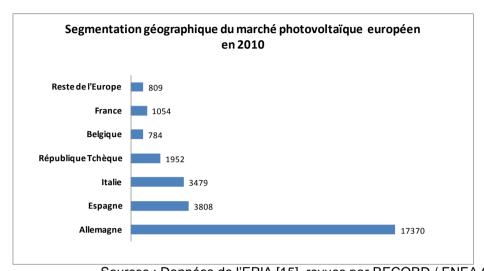
Evolution temporelle et prévisions de la capacité installée

Source : Données de l'EPIA [15], revues par RECORD / ENEA Consulting Figure 22 - Marché européen annuel et cumulé (puissances installées en MWc)

Etude n° 11-0912/1A 40

Source : Données de l'EPIA [15], de l'EEA [19] et de l'EPIA Set for 2020 [20], compilées par RECORD / ENEA Consulting

Figure 23 - Marché européen cumulé actuel et prévisionnel (MW), comparaison des prévisions


Scénario	Description
EPIA's "moderate scenario"	Considère que le marché évolue "comme d'habitude", avec un renforcement important des mécanismes de soutien à la filière (évolution raisonnable des tarifs d'achat indexés aux prix des PV).
EPIA's "policy- driven scenario"	Considère que les mécanismes de soutien à la filière continuent d'évoluer, notamment dans le cadre d'une politique dynamique de promotion du solaire comme source majeure d'énergie ainsi que l'allègement des barrières et procédures administratives.
SET for 2020 (Strategic Energy Technology Plan for 2020)	Ce scénario résulte d'une étude menée par l'EPIA avec l'objectif de définir les stratégies à adopter par les industries pour répondre aux exigences de la Commission Européenne quant à taux d'incorporation d'énergies renouvelables (12% du mix énergétique d'origine solaire PV en 2020).
NREAP (National Renewable Energy Action Plans for EU Member State)	 Objectif final pour 2020: 20% de l'énergie consommée d'origine renouvelable Des objectifs précis pour chaque type d'énergie renouvelable ont été calculés pour chaque pays (RES Target) Les moyens mis en œuvre sont communiqués dans un plan d'action détaillé auprès des instances de l'UE à l'initiative de la directive Aujourd'hui 21 pays sur les 27 ont adopté un plan d'action Les objectifs du NREAP sont mis à jour tous les deux ans

Les hypothèses de base des différents scénarii sont détaillées dans le rapport annuel de l'EPIA [15] et dans les projections des énergies renouvelables de l'Union Européenne [19]. La comparaison et la validité des scénarii sont discutées par BBH [21]. Par ailleurs, la Figure 23 représente sur une même échelle les différents scénarii élaborés par l'EPIA et l'EEA. Les écarts significatifs entre les différents scénarii avertissent des précautions à prendre en exploitant ces chiffres prévisionnels. De manière conservative, le scénario NREAP pour la construction du modèle de prévision des quantités de panneaux en fin de vie a été retenu. Les jalons intermédiaires 2010 et 2015 sont certes respectivement dépassés et sur le point de l'être en comparant quantités PV réellement installées et

objectifs NREAP. Néanmoins, aucun argument de permet de pencher de manière irréfutable pour l'un des scénarii EPIA, tous plus optimistes que NREAP.

Alternativement, le scénario « baseline » de « Set For 2020 » a toutefois également été considéré, afin d'intégrer à l'étude un point de vue moins conservatif quant au volume de modules mis sur le marché dans les années à venir. La prise en compte de ces deux scénarios permet d'aboutir à une courbe enveloppe des gisements de modules à recycler.

Segmentation géographique du marché européen

Sources : Données de l'EPIA [15], revues par RECORD / ENEA Consulting Figure 24 - Segmentation par pays de la capacité installée cumulée en Europe en 2010 (MWc installés)

		20	08			20	09			20	010		
Pays	Connecté au réseau	Hors réseau	Cumul		Connecté au réseau	Hors réseau	Cumul		Connecté au réseau	Hors réseau	Cur	mul	
Allemagne	5979	40	6019	58%	9785	45	9830	60%	17320	50	17370	59%	
Espagne	3402	19	3421	33%	3500	21	3521	22%	3787	21	3808	13%	
Italie	445	13	458	4%	1019	13	1032	6%	3465	14	3479	12%	
République Tchèque	54	0	55	1%	465	1	466	3%	1952	0	1952	7%	
Belgique	71	0	71	1%	363	0	363	2%	784	0	784	3%	
France	83	21	104	1%	306	21	327	2%	1025	29	1054	4%	
Reste de l'Europe	215	33	248	2%	721	44	765	5%	840	40	880	3%	
TOTAL	10250	126	10376	100%	16160	145	16304	100%	29173	154	29328	100%	

Source : EPIA [15]

Tableau 17 - Capacité installée cumulée des pays européens en 2008, 2009 et 2010 (MWc installés)

Segmentation du marché européen par type d'application

Il y a une variabilité significative des proportions de la segmentation par type d'utilisation d'un pays européen à l'autre.

Pays	Centrale au sol	Bâtiment Commercial / Industriel	Bâtiment Résidentiel
Allemagne	20%	68%	12%
Espagne	20%	70%	10%
Italie	20%	60%	20%
République Tchèque	22%	78%	0%
Belgique	9%	29%	62%
France	9%	49%	42%
Grèce	94%	2%	4%
Royaume-Uni	0%	4%	96%
Slovaquie	97%	3%	0%
Portugal	67%	7%	26%

Source : Données de l'EPIA [15], revues par RECORD / ENEA Consulting

Tableau 18 - Segmentation de la puissance installée européenne par type d'utilisation et pays

Segmentation du marché européen par type de technologie

Segmentation du marché PV	installé par te	echnologies	(en %)					
	1990	1995	2000	2005	2010	2011	2015	2020
Silicium mono-/polycristallin								
(c-Si)	72	87	90	94	86,1	85,0	68,0	61,0
Silicium amorphe (a-Si)	28	13	10	4	5,0	3,0	5,0	9,0
CdTe	0	0	0	2	5,3	7,6		
CIS / CIGS dont sous-								
familles	0	0	0	0	1,6	2,4	8,0	13,0
Autres	0	0	0	0	2,0	2,0	2,0	6,0

Source : Données historiques (jusqu'à 2009) basées sur l'étude de Navigant Consulting [22] ; données actuelles selon l'EPIA [15] et réactualisées par RECORD / ENEA Consulting [16] ; prévisions selon EPIA [15]

Tableau 19 - Segmentation du marché des PV installés par technologie, estimation du passé et prévisions futures ²

Les tendances du marché montrent que les technologies en couches minces rencontrent des difficultés à conquérir des parts de marché vis-à-vis des technologies cristallines, qui voient leur coût de production diminuer sous le double effet de la baisse des cours du silicium et des innovations technologiques apportées. De plus, les technologies en couches minces de silicium amorphe a-Si et micro-Si semblent moins prometteuses que le CdTe. On note un phénomène récent de déclin des technologies amorphes remplacées par les technologies micro-morphes. Les cellules en couches minces de type CiGS, malgré leur rendement élevé pour une technologie en couches minces, présentent une limite importante dû aux tensions d'approvisionnement de l'indium, en concurrence directe avec l'industrie des écrans plats. Les technologies en couches minces de type CdTe sont enfin limitées par le potentiel danger qu'elles représentent. Bien qu'exemptées de la directive RoHS en Europe, elles sont par exemple proscrites pour des utilisations intégrées au bâtiment en France.

MARCHE PHOTOVOLTAÏQUE FRANÇAIS

Evolution temporelle et prévisions de la capacité installée

Le marché français a connu une forte croissance de 2008 à 2011, bien que sa part sur le marché européen reste encore faible (Figure 24). Cependant, on peut s'attendre à un ralentissement important de la croissance en conséquence du moratoire posé en 2010 sur les installations photovoltaïques.

² Note: Les différentes prévisions pour les parts de marché des couches minces à horizon 2015 varient de 15 à 30% selon les sources. Les chiffres retenus pour cette étude constituent donc des valeurs optimistes quant aux parts de marché des couches minces, situés dans la fourchette haute des prévisions.

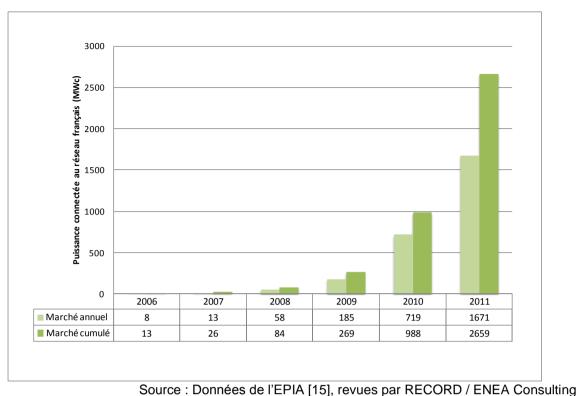
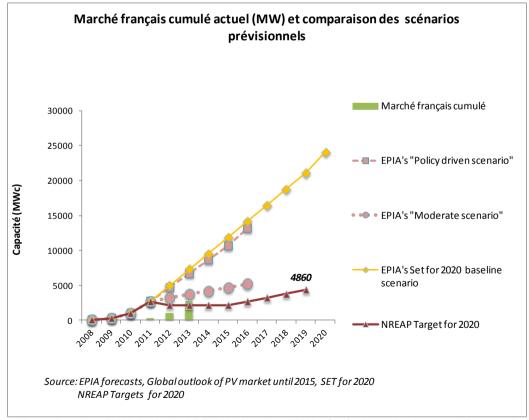



Figure 25 - Evolution de la capacité (puissance connectée en MWc) du marché photovoltaïque français de 2006 à 2011

Source : Données de l'EPIA [15], de l'EEA [19] et de l'EPIA, Setfor2020 [20], compilées par RECORD / ENEA Consulting

Figure 26 - Marché français cumulé actuel et prévisionnel (MW), comparaison des scénarii prévisionnels

Les mêmes conclusions que pour les scénarii prévisionnels européens sont applicables aux scénarii français. Les hypothèses de base des différents scénarii sont détaillées dans le rapport annuel de l'EPIA [15] et dans les projections des énergies renouvelables de l'Union Européenne [19]. La comparaison et la validité des scénarii sont discutées par BBH [21]. Par ailleurs, la Figure 26 représente sur une même échelle les différents scénarii élaborés par l'EPIA et l'EEA. Les écarts significatifs entre les différents scénarii avertissent des précautions à prendre en exploitant ces chiffres prévisionnels. De la même manière que pour le périmètre européen, c'est sur le scénario NREAP, le plus conservatif, que l'étude est basée pour la prévision de la quantité de panneaux PV en fin de vie à recycler.

On note toutefois que les objectifs NREAP 2015 pour la France (2151 MW) sont déjà atteints en 2011 (2659 MW).

Alternativement, le scénario « baseline » de « Set For 2020 » a toutefois également été considéré, afin d'intégrer à l'étude un point de vue moins conservatif quant au volume de modules mis sur le marché dans les années à venir. La prise en compte de ces deux scénarios permet d'aboutir à une courbe enveloppe des gisements de modules à recycler.

Segmentation du marché français par type d'application

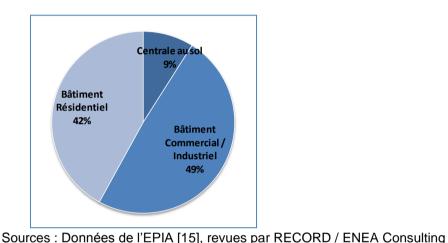
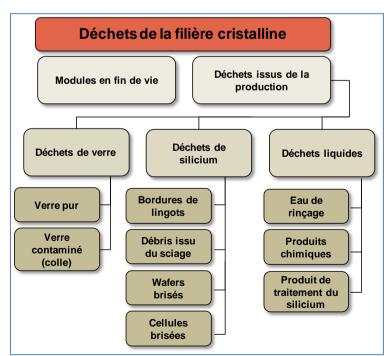


Figure 27 - Segmentation du marché photovoltaïque français par nature d'utilisation des installations (% de MWc)

1.5 Les modules photovoltaïques en tant que déchets

CARACTERISATION DES DECHETS ISSUS DE LA FILIERE PHOTOVOLTAÏQUE

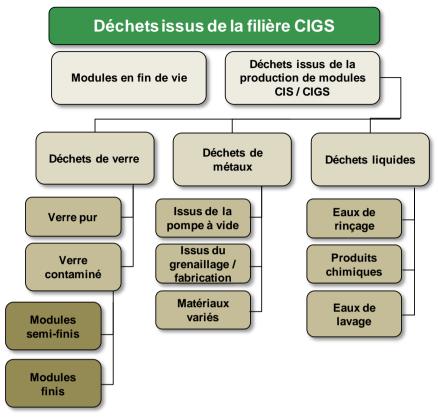
Caractérisation des déchets issus de la filière photovoltaïque


Les déchets sujets au recyclage et issus de la filière photovoltaïque présentent des caractéristiques variées (forme, niveau de pureté...) mais sont, par définition, de même nature. L'identification de l'ensemble des déchets issus de la filière photovoltaïque est importante pour déterminer d'éventuelles synergies dans leur recyclage respectif, soit :

- En utilisant un réseau de collecte commun ;
- En utilisant certaines étapes en commun dans leur recyclage.

En effet, chacune des étapes du cycle de vie d'un module photovoltaïque est à l'origine d'un pourcentage de déchets spécifiques (de par le procédé de fabrication, la fragilité intrinsèque de la technologie, ...):

- Pré-traitement de la matière première (purification du silicium au grade solaire)
- Traitement de la matière première (fonte et préparation du lingot)
- Production de la cellule à partir du lingot
- Production du module photovoltaïque
- Emballage et stockage du module
- Transport du module
- Installation du module chez l'utilisateur final
- Utilisation du module par l'utilisateur final (exposition aux intempéries et imprévus)
- Désinstallation du module en fin de vie
- Transport du module en fin de vie ; tri et stockage du module en fin de vie.


Les différents types de déchets de la filière cristalline

Source: RECORD / ENEA Consulting

Figure 28 - Déchets issus de la filière cristalline

Les différents types de déchets de la filière couches minces

Source: RECORD / ENEA Consulting d'après [6]

Figure 29 - Déchets issus de la filière CIGS

Causes de fin de vie

D'après les retours d'expérience des recycleurs variés, plusieurs dégénérescences précoces qui pourraient être à l'origine de la fin de vie de certains modules ont été observées :

Défauts techniques

Défauts observés	Explication possible	Baisse de puissance associée (estimation)
Pertes optiques	Jaunissement de l'encapsulant	1% par an
Délaminage	Adhésion réduite de l'EVA aux composants	Pas de pertes directes
Oxydation	Oxydation naturelle des métaux	0.5% par an
Effet « Hot Spot »	Température anormalement élevée d'un endroit ciblé du module	0.5% par an

Source: Thèse de C. Froitier sur l'évaluation des technologies de recyclage [23]

Tableau 20 - Résumé des causes et conséquences des défauts techniques d'un module photovoltaïque

<u>Note</u>: Effet "hot-spot": Ce phénomène a lieu lorsqu'une unique cellule parmi une série d'autres est à l'ombre. La cellule se comporte alors comme une résistance ohmique et surchauffe jusqu'à sa propre dégradation car le courant continue de circuler. La présence de diode permet de « *by-passer* » ce phénomène.

<u>Note</u>: Les valeurs de baisse de puissance indiquées dans le Tableau 20 constituent des valeurs maximales estimées en 2008. En pratique, les baisses sont moindres, de sorte que les garanties de rendement annoncées par les principaux fournisseurs (typiquement 90% du rendement initial après 10 ans, 80% après 25 ans) sont dans les faits majoritairement respectées.

Causes possibles de dégradation des modules photovoltaïques les amenant au stade de fin de vie :

- Changement brutaux et répétés de température
- Exposition prolongée aux UV
- Infiltrations d'eau dans le module
- Exposition à des environnements à haute salinité

Contraintes réglementaires pouvant amener à l'abandon d'un système photovoltaïque

- Lorsque le terrain ou le toit servant de support au module change de propriétaire, alors le propriétaire ne s'approprie pas forcément le système photovoltaïque.
- EDF étant engagé sur une période de 20 ans pour le rachat de l'électricité photovoltaïque à des prix préférentiels, la fin de cette période pourrait amener l'utilisateur à se défaire de son système.

Contrainte économique

L'apparition de nouvelles technologies plus performantes sur le marché pourrait amener l'utilisateur à mettre à jour les technologies qu'il utilise pour optimiser les rendements économiques de son installation.

Contrainte d'intégration au bâti

Si les propriétaires d'une installation intégrée au bâti font face à des problèmes d'étanchéité sur leur toit du fait de l'installation des modules photovoltaïques, ils peuvent être amenés à retirer entièrement l'installation indépendamment de l'état du système photovoltaïque.

EVALUATION QUANTITATIVE DE LA FIN DE VIE PREMATUREE DE MODULES

Cause de fin de vie	Pourcentage associé
Nouveaux modules endommagés	
Déchets sur la chaîne de production	0,2%
Dommage lors du transport et assemblage, mauvais designs	0,5%
Fin de vie prématurée pendant les 2 premières années d'opération	0,8%
Défauts sur les systèmes installés	0,3%

Source: [5]

Figure 30 - Estimation des pourcentages de modules en fin de vie prématurée selon les causes

Ce sont les estimations de la Figure 30 qui sont utilisées dans la suite de l'étude.

A titre informatif, selon Gehrlicher Solar AG, la quantité de modules cassés après l'installation est de l'ordre de 0,5% d'une centrale solaire cristalline, et 1 à 5 modules par MWc pour les modules en couches minces.

1.6 Evaluation des quantités PV en fin de vie

Le volume du gisement potentiel de modules en fin de vie est un des facteurs déterminants dans la définition d'une stratégie de recyclage des modules photovoltaïques, la qualité du recyclage étant notamment liée aux volumes du gisement disponibles. A ce titre, le gisement massique potentiel de modules en fin de vie générés annuellement a été évalué, jusqu'en 2045, en France et en Europe. La méthodologie, inspirée sur certains points de l'évaluation réalisée dans le passé par Bio Intelligence Service [24], intègre des hypothèses spécifiques détaillées ci-après, en utilisant les données présentées dans l'étude de marché ci-dessus (segmentation géographique, segmentation technologique et capacités prévisionnelles).

La méthodologie paramétrable, enrichie dans le cadre de la présente étude, est donc constituée de la série d'étapes et d'hypothèses suivantes :

- Prévisions de la capacité PV annuelle et cumulée, française et européenne, de 2006 à 2020 selon le scénario « NREAP Targets for 2020 »
 - Les données historiques (2006 à 2011) sont basées sur l'EPIA [15].
 - C'est le scénario NREAP, le plus conservatif, qui est retenu pour la modélisation, de 2012 à 2020 (Figure 23 et Figure 26).
 - L'objectif intermédiaire NREAP 2015 étant déjà atteint en 2011 dans le cas de la France, et sur le point de l'être dans le cas européen, il n'est pas pris en compte.
 - Aussi les données cibles 2012 à 2019 sont-elles obtenues par interpolation linéaire entre les valeurs 2011 (constatées) et 2020 (prévision NREAP).

Prévisions E	Prévisions Europe sur les capacités annuelles et cumulées (MW) selon les "NREAP Targets"															
		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
NREAP Targe	Annuel	987	1972	5297	5803	13420	21939	3629	3629	3629	3629	3629	3629	3629	3629	3629
NREAP Targe	Cumulé	3285	5257	10554	16357	29777	51716	55345	58974	62603	66232	69860	73489	77118	80747	84376

Prévisions Fran	Prévisions France sur les capacités annuelles et cumulées (MW) selon les "NREAP Targets"															
		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
NREAP Targets	NREAP Targets Annuel 8 13 58 185 719 1671 245 245 245 245 245 245 245 245 245 245															
(MW)	Cumulé	13	26	84	269	988	2659	2904	3148	3393	3637	3882	4126	4371	4615	4860

- Segmentation de la capacité annuelle et cumulée, en France et en Europe, de 2006 à 2020, par type de technologie
 - Les parts de marché de chaque technologie sont extrapolées par interpolation linéaire jusqu'en 2020, à partir des données historiques (jusqu'à 2009) basées sur l'étude de Navigant Consulting [22] et des données actuelles et prévisions de l'EPIA [15] (voir Tableau 19)
 - Les parts de marché de chaque technologie sont supposées identiques en France et en Europe

Evolution parts d	e marché par tech	nologie (MW) - Eu	ırope												
		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	202
	TOTAL annuel (MW)	987	1972	5297	5803	13420	21939	3629	3629	3629	3629	3629	3629	3629	3629	3629
	Silicium mono/poly															
Quantités	cristallin (c-Si)	912,2	1791,4	4728,1	5088,1	11554,6	18648,2	2930,3	2776,1	2621,9	2467,6	2416,8	2366,0	2315,2	2264,4	2213,6
prévisionnelles	Silicium amorphe (a-															
annuelles (MW) de	Si)	41,5	86,8	243,7	278,5	671,0	658,2	127,0	145,2	163,3	181,4	210,5	239,5	268,5	297,6	326,6
technologies sur le	CdTe	26,3	65,5	210,8	269,3	711,3	1667,4	361,1	446,4	531,6	616,9	573,4	529,8	486,3	442,7	399,2
marché européen	CIS / CIGS dont sous-															
marche europeen	familles	3,2	12,6	50,9	74,3	214,7	526,5	137,9	188,7	239,5	290,3	326,6	362,9	399,2	435,5	471,8
	Autres	3,9	15,8	63,6	92,8	268,4	438,8	72,6	72,6	72,6	72,6	101,6	130,6	159,7	188,7	217,7

Evolution parts d	volution parts de marché par technologie (MW) - France															
		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
	TOTAL annuel (MW)	8	13	58	185	719	1671	245	245	245	245	245	245	245	245	245
	Silicium mono/poly-															
Quantités	cristallin (c-Si)	7,4	11,8	51,8	162,2	619,1	1420,4	197,5	187,1	176,7	166,3	162,9	159,5	156,0	152,6	149,2
prévisionnelles	Silicium amorphe (a-															
annuelles (MW) de	Si)	0,3	0,6	2,7	8,9	36,0	50,1	8,6	9,8	11,0	12,2	14,2	16,1	18,1	20,1	22,0
technologies sur le	CdTe	0,2	0,4	2,3	8,6	38,1	127,0	24,3	30,1	35,8	41,6	38,6	35,7	32,8	29,8	26,9
marché européen	CIS / CIGS dont sous-															
marche europeen	familles	0,0	0,1	0,6	2,4	11,5	40,1	9,3	12,7	16,1	19,6	22,0	24,5	26,9	29,3	31,8
	Autres	0,0	0,1	0,7	3,0	14,4	33,4	4,9	4,9	4,9	4,9	6,8	8,8	10,8	12,7	14,7

 Evaluation des quantités annuelles prévisionnelles (MW) de PV en fin de vie par typologie de PV de 2008 à 2045 en France d'une part, et en Europe d'autre part

- Les prévisions de quantité de modules en fin de vie sont basées sur les données caractérisant le marché annuel et non le marché cumulé.
- La durée de vie moyenne d'un module photovoltaïque est supposée égale à 25 ans. Fin de vie prématurée, aléas naturels, mauvais entretien, remplacement prématuré sous période de garantie ou hors période de garantie afin de substituer le module existant par un module au rendement plus élevé : autant de raisons pouvant amener à une fin de vie d'un module avant 25 ans d'utilisation. De même, rien n'indique aujourd'hui que les modules seraient défaillants après 25 ans d'utilisation. Ils seraient a priori encore opérationnels, avec toutefois un rendement dégradé. Cette durée de vie de 25 ans n'est donc qu'indicative.
- O Hypothèse : **1,6%** du marché annuel est supposé en état de fin de vie après les deux premières années suivant le démarrage de l'installation (causes : dommages pendant les phases de transport et assemblage, dégradation, usure prématurée) [2].
- En regard de l'étude réalisée par Oköpol [2], les déchets issus de la production (0.2%) ne sont pas intégrés dans ces prévisions.
- De 2008 à 2022, seuls les déchets liés à une fin de vie prématurée sont donc comptabilités dans le gisement à recycler.
- De 2031 à 2045 interviennent en plus les déchets liés à la fin de vie « usuelle » des modules, avec un décalage de 25 ans par rapport à la mise en service.
- Entre les deux (de 2023 à 2030), les quantités annuelles sont supposées constantes, faute de prévision à disposition (le scénario NREAP s'arrêtant en 2020).
- Evaluation des quantités annuelles prévisionnelles (MW) de PV en fin de vie collectées, par type de technologie, de 2008 à 2045, en France d'une part et en Europe d'autre part
 - On suppose que 80% des panneaux en fin de vie sont collectés. Ce paramètre est fixé à titre indicatif et peut évoluer avec les retours d'expériences futurs.
- Evaluation des quantités annuelles prévisionnelles (MW) de PV en fin de vie acheminées jusqu'à un centre de retraitement par type de technologie, de 2008 à 2045, en France d'une part et en Europe d'autre part
 - On suppose que la totalité (100%) des PV collectés atteint le centre de retraitement. Si les engagements des organismes agrées DEEE portent sur un taux de retraitement de 100%, dans les faits, tous les panneaux collectés ne font pas l'objet de recyclage. A défaut d'autre valeur disponible, la valeur de 100% est conservée.
 - On note que l'existence d'un marché de seconde main pourrait avoir pour conséquence de modifier à la baisse cette hypothèse. Aucune valeur n'est toutefois disponible à ce jour pour modéliser ce phénomène.

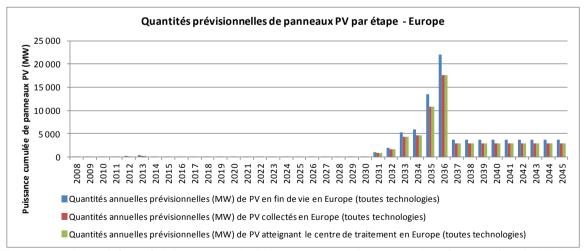


Figure 31 - Quantités prévisionnelles de PV en Europe, gisements, basé sur scénario NREAP

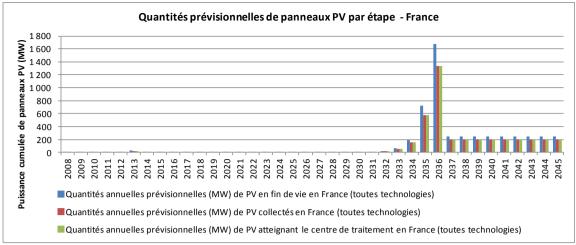


Figure 32 - Quantités prévisionnelles de PV en France, gisements, basé sur scénario NREAP

- Evaluation des quantités annuelles prévisionnelles (tonnes) de PV en fin de vie acheminées jusqu'à un centre de retraitement par type de technologie, de 2008 à 2045, en France d'une part et en Europe d'autre part
 - Pour assurer la conversion des volumes de déchets de leur capacité (en MW) à leur masse (en tonnes), des masses caractéristiques sont déterminées pour chacune des technologies. Les masses caractéristiques correspondent à une moyenne des données fournisseurs de modules provenant des principaux producteurs. Le facteur de conversion est différencié selon les technologies.

Silicium cristallin : 85 t/MWcSilicium amorphe : 160 t/MWc

CdTe: 145 t/MWc
 CIS / CIGS: 150 t/MWc
 Autres: 100 t/MWc

- Evaluation des quantités annuelles prévisionnelles (tonnes) de PV en fin de vie recyclées par type de technologie, de 2008 à 2045, en France d'une part et en Europe d'autre part
 - Les panneaux sont revalorisés à 85% de leur poids ; les panneaux solaires sont recyclés à 80% de leur poids (directive DEEE)

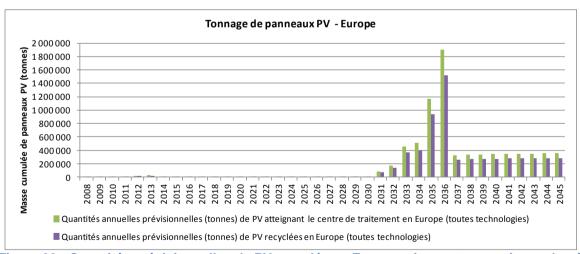


Figure 33 - Quantités prévisionnelles de PV recyclés en Europe, gisements massiques, basé sur scénario NREAP

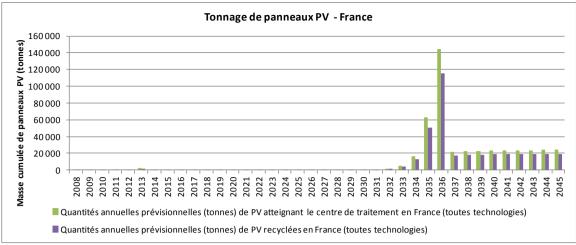


Figure 34 - Quantités prévisionnelles de PV recyclés en France, gisements massiques, basé sur scénario NREAP

Limites de la modélisation

Les valeurs prévisionnelles de modules en fin de vie à recycler sont directement reliées aux puissances installées, avec un décalage de 25 ans. En conséquent, le décrochage constaté entre 2011 et 2012 lié à la rupture entre valeurs constatées (2011) et prévisionnelle (2012, selon NREAP) se retrouve fort logiquement entre les années 2035 et 2036.

Définition de courbes enveloppes

Le scénario NREAP, qui sert de base à la modélisation décrite ci-dessus, paraît conservatif. En conséquence, il est possible de considérer un scénario plus favorable au développement des modules PV, de manière à délimiter une courbe enveloppe des gisements de déchets PV entre les deux limites bâties sur les deux scénarios retenus.

C'est le scénario de l'EPIA « Set for 2020 – Baseline Scenario » qui est choisi comme scénario alternatif, définissant l'hypothèse haute du gisement de modules en fin de vie à recycler.

En appliquant par ailleurs la même méthode et les mêmes hypothèses que précédemment, on obtient une seconde série de quantités prévisionnelles de modules PV recyclés. L'ensemble de deux courbes, pour les quantités cumulées, est représenté sur la Figure 35 et la Figure 36.

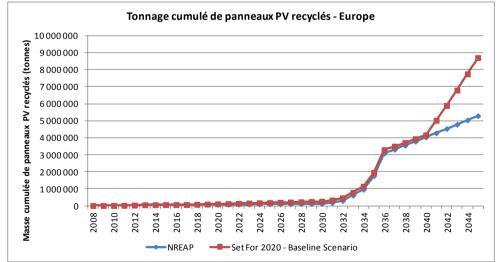


Figure 35 - Enveloppe des quantités prévisionnelles cumulées de PV recyclés en Europe, gisements massiques

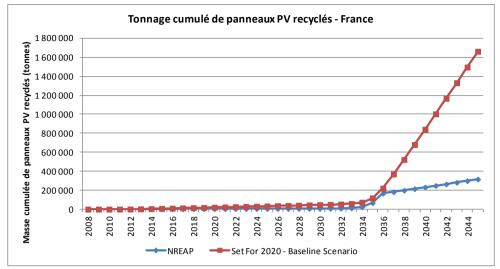


Figure 36 - Enveloppe des quantités prévisionnelles cumulées de PV recyclés en France, gisements massiques

1.7 Filières de recyclage

SEGMENTATION PAR ACTEURS DU RECYCLAGE DES PV (COLLECTE ET RECYCLAGE)

De par la diversité des acteurs concernés par le recyclage d'un panneau photovoltaïque, la réussite de la mise en place d'une filière de recyclage des modules photovoltaïques tient autant à la capacité des technologies à séparer et purifier les constituants des panneaux qu'à la bonne organisation des acteurs entre eux.

L'ensemble des acteurs sollicités au cours du cycle de vie d'un module photovoltaïque sont listés cidessous :

Extraction de la matière première

Recycleur fournisseurs de matières premières

Producteur de matière première prétraitée (lingots ou wafer)

Producteur de cellules

Fabricant de modules

Distributeur

Intermédiaire sur le territoire national entre distributeur et client

Développeur de projet photovoltaïque

Installateur

Technicien pour la mise en service (branchement au réseau)

Utilisateur primaire ou secondaire

Technicien pour la maintenance

Dés-installateur

Collecteur / Système de collecte

Centre de collecte

Centre de tri / centre de stockage

Réparateur de modules

Recycleur de modules

Recycleur des produits issus du recyclage de modules

Elimination des déchets en bout de chaîne de valeur

Logisticien

Cependant les acteurs directement concernés par la problématique de recyclage des modules photovoltaïques sur la chaîne de valeur d'un module photovoltaïque sont :

- Le producteur ou l'intermédiaire sur le territoire national entre distributeur et client si le producteur n'est pas sur le territoire national (qui, dans le cadre de la directive DEEE sera porteur de la responsabilité élargie du producteur, comme expliqué dans les *Précision dans la définition de producteur*).
- Le dés-installateur pour les applications professionnelles et l'utilisateur pour les applications résidentielles
- Le collecteur et réseaux de collecte
- Le centre de collecte
- Le centre de tri / centre de stockage
- Le réparateur de modules
- Le recycleur de modules
- Le recycleur des produits issus du recyclage de modules
- Le logisticien

Ces acteurs sont différentiables tantôt par la nature de leur activité, tantôt par leur savoir-faire et cœur de métier. Les principaux acteurs identifiés ayant un rôle déterminant dans la filière du recyclage des modules photovoltaïques sont :

- Les éco-organismes, ou structures similaires non agréées éco-organisme, aspirant à organiser la filière du recyclage des déchets DEEE. Elles ont pour but de mettre en place la filière, auditer et soutenir les acteurs en charge de la collecte et du traitement des déchets d'équipements électriques et électroniques.
- Les lobbies, associations aspirant à stimuler la filière de recyclage et ONG pour la défense de l'environnement, lutter contre l'exportation de déchets électroniques en fin de vie dans les pays en développement ou encore soutenir la filière du photovoltaïque.

- Les recycleurs, de par leur activité d'origine, ayant étendu leur domaine d'activité au recyclage des modules photovoltaïques. Les recycleurs travaillent avec les éco-organismes pour les déchets ménagers et directement avec les industriels pour les déchets professionnels.
- Les centres de recherche universitaires, publics ou privés financés par des programmes publics variés ou par des industriels.
- Les institutions définissant le cadre réglementaire de l'activité de recyclage des modules.
- Les associations organisatrices de conférences et formations sur le recyclage des PV. Par exemple, l'EPIA est représentative d'un ensemble d'industriels.

LES FILIERES DE RECYCLAGE CONNEXES

<u>Définition</u>: On désigne par « filière connexe » les déchets dont le recyclage pourrait offrir des possibilités de synergie avec celui des modules photovoltaïques.

Le recyclage des modules PV peut être associé à celui d'un certain nombre de produits. L'objectif est d'identifier l'ensemble des produits dont la filière de recyclage pourrait présenter des similarités, de caractériser la maturité des filières de recyclage de ces produits et d'évaluer la faisabilité d'une synergie grâce aux retours d'expérience notamment. La synergie peut être établie à différents niveaux :

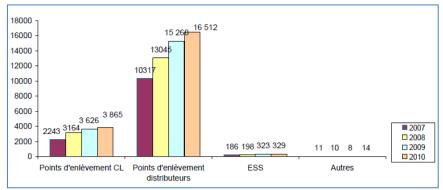
- Réseau de collecte / lieux de collecte
- Infrastructures logistiques
- Procédés de recyclage
- Technologies de séparation
- Régénération des produits du recyclage
- Réutilisation des produits du recyclage

Liste des filières connexes

La plupart des filières connexes ont en commun de traiter des produits ayant des proportions importantes de verre (de 75% à 95% selon les technologies). Le verre lui-même ayant des propriétés variées selon son origine, seul le recyclage de quelques produits spécifiques peut être en synergie avec celui des modules photovoltaïques.

D'autres synergies existent avec certains produits électroniques de par la présence de métaux stratégiques, toxiques ou précieux et en très faibles quantités.

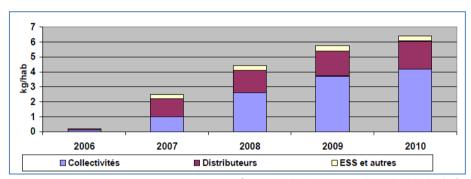
Déchets ménagers


Le recyclage des déchets ménagers à proprement parler ne peut être en synergie avec celui des modules photovoltaïques. Cependant le réseau de collecte ainsi que le système de tri peuvent être utilisés en synergie en partageant les mêmes infrastructures. Bien qu'aujourd'hui la collecte et le tri des modules photovoltaïques soient exclusivement spécifiques à ces produits et établis directement par les producteurs ou associations de producteurs de PV, la mise en commun des moyens logistiques et des points de collecte, bien que compliquée, limiterait les coûts logistiques et densifierait le réseau de collecte photovoltaïque.

Cependant le transport et le tri des modules photovoltaïques supposent des besoins spécifiques [25]. Une telle synergie des infrastructures nécessiterait donc une organisation spécifique adaptée aux besoins de la collecte des modules photovoltaïques en fin de vie.

Déchets électroniques

Le réseau de collecte et les centres de recyclage de DEEE sont matures et en croissance continue dans la plupart des pays européens, aux USA et au Japon.


 Exemple de l'évolution du nombre d'infrastructures spécifiques aux DEEE en France depuis la mise en application de la directive DEEE: en 2010, 4 éco-organismes (Eco-logic, ERP, Recylum et Eco-systèmes) et 20720 points d'enlèvement (agréés et actifs établis sur le territoire français) sont en place.

Source : Indicateurs de suivi de la filière DEEE [26]

Figure 37 - Répartition des points d'enlèvement par catégorie en France

La directive DEEE étant appliquée depuis 2006, le taux de collecte et de recyclage est en constante augmentation. On observe actuellement un taux de collecte moyen sur l'ensemble des produits DEEE de 31 % en 2011 pour 6,9 kg/hab [27]. Cependant, les phénomènes d'exportation restent importants et concernent environ 35% des déchets électriques et électroniques européens parmi ceux collectés.

Source : Indicateurs de suivi de la filière DEEE [26]

Figure 38 - Performance de collecte des DEEE ménagers (en kg/an/hab) en France

La filière de recyclage des modules photovoltaïques pourrait, à plus long terme, bénéficier de la dynamique de la filière DEEE via la mise en commun de systèmes administratifs de traçabilité, du réseau de points de collectes, des systèmes logistiques adaptés à des volumes importants ou encore même des procédés de recyclage.

Les déchets électroniques pouvant présenter une synergie dans leur procédé de recyclage avec les procédés spécifiques aux modules photovoltaïques sont listés ci-dessous, associés à leur niveau de maturité :

Ecrans LCD [7]

Les écrans LCD sont notamment composés d'indium, de verre et de terres rares.

Pratique courante : Le démantèlement des écrans est réalisé en France par des spécialistes puis ceux-ci sont traités dans des dalles incinérées ne permettant pas le recyclage de l'indium. Récupération des métaux stratégiques :

- En Belgique, Umicore récupère et recycle l'indium.
- En France, Recupyl, a développé un procédé de récupération de l'indium.
- Aux Etats-Unis, Umicore recycle l'indium des chutes de production de la couche ITO.

Actuellement, le démantèlement manuel permet de traiter les écrans plats avant la mise en place d'outils industriels. Les acteurs sont des entreprises de traitement des déchets et des entreprises de l'économie solidaire et sociale. Les fractions « classiques » (coques plastiques, cartes électroniques, métaux ferreux, métaux non ferreux...) sont expédiées chez des repreneurs qui n'ont pas changé par rapport à ceux utilisés pour les fractions des écrans à tubes cathodiques. Les lampes CCFL sont expédiées vers des installations de traitement des lampes ou des entreprises spécialisées dans le traitement du mercure. Le plastique des plaques diffusives est trié par type de plastique et orienté vers des recycleurs spécialisés. Les cristaux liquides ne sont pas pour le moment recyclés. La récupération de l'ITO contenu dans les dalles LCD est à l'étude. La dalle est composée de deux feuilles de verre. L'ITO est déposé en couche sur la surface du verre, sur la face située au centre de la dalle.

L'extraction de la couche d'ITO n'est donc possible que par traitement de la dalle en elle-même. Le broyage des écrans plats n'est réalisé que par peu d'entreprises de traitement. Certaines technologies de broyage permettent de traiter plus rapidement les appareils tout en garantissant un captage du mercure et un nettoyage des fractions résultantes. Les déchets et polluants sont regroupés dans les résidus séparés qui contiennent le mercure. Cette fraction est éliminée. Les fractions métalliques, plastiques et verres sont triées puis les métaux et plastiques sont orientés vers des filières classiques de valorisation matière. En ce qui concerne les verres qui contiennent toujours l'ITO, il est actuellement étudié comment isoler cette fraction et comment récupérer l'indium. Trois projets de R&D sur l'extraction de l'ITO différents ont été identifiés plus un projet qui concerne la récupération de l'ITO après broyage. Deux projets de recyclage des cristaux liquides sont également en cours.

Un programme de R&D développe aujourd'hui un procédé unique de recyclage des écrans LCD et des modules photovoltaïques en couches minces en synergie.

Des essais de recyclage de modules photovoltaïques dans un procédé de recyclage d'écrans de télévisions ont abouti à des taux de recyclage très faibles et ont conclu à l'absence de synergie entre les deux filières.

Batteries [7]

Les batteries sont des équipements électroniques comportant un ensemble de composants laminés et posant les mêmes difficultés de délaminage que les modules photovoltaïques. En France, un système actif de collecte des batteries a été mis en place, présentant récemment des résultats de 34% de taux de collecte. Les deux procédés utilisés actuellement sont :

- Hydrométallurgie par Euro Dieuze Industrie ou Recupyl: après broyage et séparation, les fractions non-ferreuses sont mises en solution et subissent une attaque acido-basique à température ambiante;
- Pyrométallurgie par Umicore ou SNAM : fusion à haute température et affinage de la fraction métallique.

Ces procédés ne permettent de récupérer et valoriser réellement que le fer, le nickel et le cobalt et parfois l'aluminium et le cuivre. Le lithium n'est actuellement pas valorisé mais des projets R&D sont en cours.

Accumulateur nickel-hydrure métallique (NiMH)

A l'heure actuelle les recycleurs utilisent des procédés thermiques qui ne permettent pas de récupérer ni de valoriser réellement que le fer, le nickel et le cobalt. Aucune valorisation des terres rares n'est actuellement effectuée par les éco-organismes. Elles partent en décharge ou en remblaiement directement. Toutefois, Umicore et Rhodia viennent de mettre au point un procédé de recyclage des terres rares des batteries NiMH. Opérationnel depuis fin 2011, ces procédé s'appliquent à l'ensemble des accumulateurs NiMH (applications mobiles et véhicules hybrides/électriques). Par exemple, le nouveau site de recyclage d'Umicore à Hoboken peut recycler les terres rares après avoir séparé le nickel et le fer mélangés, en les concentrant avant de les envoyer pour raffinage et reformulation en matériaux nouveaux sur le site de Rhodia à La Rochelle (France).

Lampes Fluo-Compactes (gas discharge lamps)

Le recyclage des lampes à décharge à gaz a pour principal point commun avec celui des modules photovoltaïques sa proportion élevée de verre, pollué par une quantité infime des métaux stratégiques et/ou toxiques. La collecte de ce type de déchets est déjà active.

Etats des lieux des activités en France pour le recyclage des lampes à décharge à gaz :

- Collecte active notamment organisée par l'éco-organisme Recylum (taux de collecte de 32% en 2008)
- Recyclage actif et ayant atteint un taux de recyclage de 33,5 % en 2011 : Broyage et séparation des fractions réalisés en France, les poudres avec terres rares sont enfouies. On note le développement par Rhodia d'un procédé de séparation des terres rares des poudres.
- Deux projets de recherche sur la valorisation des poudres (Valoplus en France et un autre laboratoire en Chine)
- La faible rentabilité économique de ces activités est frein majeur au développement de la filière.

Le traitement est souvent constitué d'un système de broyage suivi d'un dispositif de séparation des métaux et des plastiques sous forte aspiration capable de filtrer le mercure et de récupérer les poudres. Le verre sodo-calcique des tubes fluorescents est recyclé en boucle fermée à plus de 87% et le verre borosilicate est majoritairement recyclé (pour des applications industrielles telles que la laine de verre, les abrasifs, les peintures réfléchissantes ...) ou valorisé en substitut de silice. Seule

une infime partie est détruite et enfouie. Les plastiques, au contraire, sont généralement valorisés énergétiquement.

Les poudres fluorescentes, constituées principalement de phosphates (P₂O₅) et de terres rares (Yttrium, Gadolinium, Europium et Terbium), sont aspirées lors du traitement des lampes. Ces poudres, qui contiennent du mercure, nuisent à la qualité du verre qui ne pourrait alors pas être recyclé. Jusqu'à récemment, les centres de traitement enfouissaient les poudres et cette opération représentait un coût pour la filière d'environ 350€/tonne de poudre. A présent, avec l'arrivée d'une nouvelle filière de traitement, il devient possible pour les centres de traitement de réduire leurs coûts, voire d'obtenir un gain en valorisant les poudres grâce aux terres rares qu'elles contiennent.

Au terme de près de trois années de collaboration avec Recylum et les centres de traitement de la filière lampes, Rhodia vient de mettre au point un procédé de séparation des terres rares contenues dans les poudres fluorescentes. Elles pourront désormais être affinées en vue de leur recyclage dans ses usines à Saint-Fons et à La Rochelle.

Plusieurs autres acteurs industriels impliqués dans la fabrication des lampes travaillent également à la mise au point de procédés permettant le recyclage des poudres et des terres rares qu'elles contiennent.

Produits verriers

Verre

- Verres laminés et fenêtres
- Ecrans

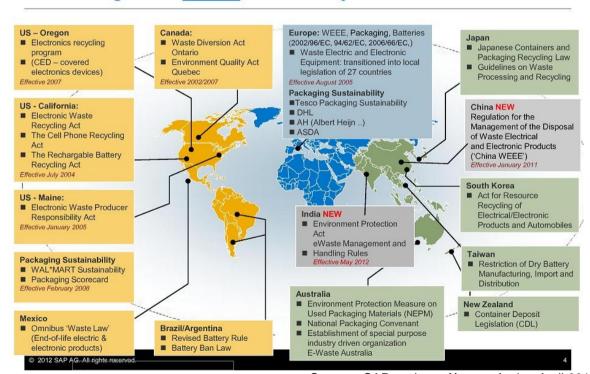
Miroirs

2. Contexte réglementaire du recyclage des PV

Le cadre réglementaire de l'activité de collecte et de recyclage des modules photovoltaïques a évolué dans les principaux pays concernés par cette étude depuis 2005. A titre de comparaison, alors que les problèmes environnementaux induits par la production et le non-recyclage des équipements électriques et électroniques s'étaient manifestés dès le début des années 1980, la mise en œuvre d'une réglementation stricte encadrant ces activités n'a commencé qu'au début des années 2000.

Le cadre réglementaire encadrant le recyclage des modules photovoltaïques en fin de vie, en cours de développement, est donc relativement précoce, compte tenu de la jeunesse de la filière et des faibles volumes actuels de modules en fin de vie.

Les réglementations qui pourraient concerner la filière de collecte et de recyclage des modules photovoltaïques ont principalement trait à :


- La gestion des composants toxiques contenus dans les modules photovoltaïques;
- La gestion de la fin de vie des modules photovoltaïques, comprenant leur collecte et leur retraitement (taux de collecte, mode de collecte, taux de recyclage, conditions opératoires de la collecte et du recyclage, enfouissement, incinération et exportation);
- La gestion des ressources et matières premières ;
- L'emballage des modules photovoltaïques ;
- Les conditions d'installation, désinstallation et démantèlement (inclusion dans les contrats d'installation de la gestion de la fin de vie) ;
- Les conditions d'importation et d'exportation des modules photovoltaïques en tant que produit ou en tant que déchet.

La carte ci-après recense les réglementations existantes de par le Monde relatives aux déchets.

Recycling Regulations Spreading Globally*

Soon All Markets Will Have Recycling Compliance Regulation

"Number of Regulations doubled in the last six years" - Gartner GRC Summit 2008

Source : SAP, web-conférence Agrion Avril 2012

Figure 39 - Réglementations relatives aux déchets dans le Monde

Quant au Tableau 21, il indique l'ensemble des réglementations étudiées dans le cadre de cette étude, et précise leur application ou non, à ce jour, au cas des modules PV en fin de vie.

Pays	Règlementation	Maturité	Objectifs	Date de mise en application	Concerne modules PV en fin de vie
International	Convention de Bâle sur le contrôle des mouvements transfrontaliers de déchets dangereux et de leur élimination	Appliquée		Signé en mars 1989, en vigueur depuis mai 1992	Oui
Union Européenne	DEEE	En cours de structuration	Impose le système de REP et la valorisation des DEEE	2006	Oui
Union Européenne	Directive cadre relative aux déchets	Appliquée			Oui
Union Européenne	Ratification du "Ban Amendement" de la Convention de Bâle et directive relative aux transferts de déchets transfrontaliers	Appliquée	· · · · · · · · · · · · · · · · · · ·	1997 et 2006 pour la directive	Oui
Union Européenne	Raw Materials Initiative	Appliquée	Expose des mesures pour sécuriser et améliorer l'accès aux matières premières (hors énergie) : sécuriser le marché européen, favoriser le recyclage et réduire la consommation	Novembre 2008	Oui - Couches Minces
Union Européenne	RoHS	Appliquée	Classification et régulation des substances dangereuses d'un produit	2003	Non
Union Européenne	REACH	Appliquée	Régulation au sein de la Communauté Européenne sur les produits chimiques et leur utilisation	2006	Non
France	Code de l'environnement				En partie
France	Appels d'offres de projets photovoltaïques		Appels d'offre publics incluent la nécessaire prise en compte de la garantie pour le recyclage futur des modules		Oui
France	Réglementation ICPE (installations classées pour la protection de l'environnement)		Régule le stockage et le transport des équipements classés (liste dans l'annexe II de l'article R. 541-11 du code de l'environnement)		
France	Décret 2005-829	Appliquée	Transcription de la directive DEEE en droit français	2005	Non
France	Article R. 543-206	Appliquée	Transcription en droit français la directive européenne RoHS		Non
	Les réglementations sur les émissions polluantes des usines d'incinération, qui entraînent des restrictions sur les éléments incinérés	Appliquée			Oui
France	Restriction des apports en centre d'enfouissement technique aux seuls déchets ultimes	Appliquée		2002	Oui
France	Articles R. 541-42 à R. 541-48 du code de l'environnement indiquant qu'un suivi des déchets et de leur devenir est obligatoire via l'existence de registres et bordereaux de suivi	Appliquée			Non
Allemagne	ElektroG	Appliquée	Transcription de la directive européenne DEEE	2005	Non
Belgique	Obligation d'une règle obligeant la collecte des PV en fin de vie	Non		En cours de rédaction depuis janvier 2012	Oui
Italie	Loi sur l'adhésion à un programme de recyclage		Impose le recyclage des panneaux photovoltaïques en obligeant l'adhésion à un organisme volontaire		Oui
Autriche	Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (BMLFUW)	Appliquée	Modules intégrés aux bâtiments: pas de REP ; modules au sol: REP		Oui
	Loi sur la collecte et la provision financière pour le recyclage futur des modules PV	Oui			Oui
Suisse	Vreg		Régulation sur les déchets électroniques		Non

Pays	Règlementation	Maturité	Objectifs	Date de mise en application	Concerne modules PV en fin de vie
USA	Electronic Waste Recycling Act	Appliquée	Régule la gestion des déchets	2008	Non
USA	Covered Electronic Devices (CED)			2007	Non
Californie	HWCL Hazardous Waste and Hazardous Substances Law	Appliquée	Régule la gestion des substances dangereuses	2012	Oui
Maine	Electronic Waste Producer				Non
Oregon	Electronic Recycling Program			2007	Non
Canada	Waste Diversion Act				Non
Canada	Environment Quality Act			2007	Non
Japon	Guidelines on Waste Processing and Recycling	Appliquée			Non
Japon	Electric Household Appliance Recycling Law	Appliquée	Régulation sur le recyclage des déchets électroniques (inclus uniquement TV, climatiseurs et gros équipements électroménagers)	2001	Non
Japon	Basic Law for Establishing a Recycling-based Society	Appliquée	Loi individuelles pour le grand public sur le recyclage des déchets en général	2000	Non
Chine	DEEE Chinoise: Regulation for the Management of the Disposal of Waste Electrical and Electronic Products			2011	Non
Chine	Interdiction d'importation des déchets				Oui
Corée	Act for Ressource Recycling of Electrical/Electronic Products and Automobiles				Non
Inde	Environmental Protection Act				Oui
Inde	e-Waste Management and Handling rules			2012	Non
Taiwan	Restriction of Dry Battery Manufacturing, Import and Distribution				Non
Mexique	Omnibus "Waste Law"				Non

Tableau 21 - Liste des réglementations étudiées au niveau mondial

2.1 Cadre réglementaire européen

DEEE (DIRECTIVE SUR LES DECHETS ELECTRIQUES ET ELECTRONIQUES)

CONTEXTE

Mise en place de la réglementation sur les déchets

La direction générale de l'environnement de la Commission européenne a développé depuis 2002 un processus d'élaboration de « stratégies par thématiques » qui consiste en un « communiqué de la Commission Européenne », puis une « évaluation d'impact » analysant l'impact écologique, économique et social de la situation existante et les possibilités de solutions d'amélioration, et enfin en une proposition de réglementation. Ces « stratégiques par thématiques » servent de base de travail pour l'élaboration de réglementations. En revanche, elles n'ont aucun pouvoir contraignant sur les Etats membres de l'UE.

- La « stratégie par thématiques » sur l' « utilisation durable des ressources » a pour but initial de minimiser les impacts environnementaux négatifs liés aux activités d'extraction et d'utilisation des ressources en utilisant une approche par Analyse de Cycle de Vie.
- La « stratégie par thématiques » sur « la prévention et le recyclage » a pour but d'établir une politique de réduction des quantités de déchets, et de promouvoir la réutilisation, le recyclage et la récupération des déchets et/ou de leurs composants.

La corrélation entre ces deux thématiques amène à réutiliser les déchets comme source. La directivecadre relative aux déchets [28] définit tous les termes du recyclage (notion de fin de vie, récupération, traitement, ...) ainsi que les normes et standards applicables aux activités de recyclage. Les objectifs correspondants sont notamment :

- la préservation, la protection et l'amélioration de la qualité de l'environnement,
- la protection de la santé des personnes,
- l'utilisation prudente et rationnelle des ressources naturelles.

Mise en place de la Responsabilité Elargie du Producteur

Le concept de Responsabilité Elargie du Producteur est né dans les années 1980 et marque le début de la prise en compte du cycle de vie du produit, de la conception jusqu'au recyclage. La REP consiste en une déclinaison réglementaire du concept de « pollueur payeur ».

Avec la directive sur les Déchets d'Equipement Electriques et Electroniques, la notion de REP est étendue du producteur de déchets au producteur de produits (où le produit est alors considéré comme un déchet potentiel).

PRINCIPES DE LA DIRECTIVE EUROPEENNE DEEE

« Article 1 - Objet

La présente directive instaure des mesures qui visent à protéger l'environnement et la santé humaine par la prévention ou la réduction des effets nocifs associés à la production et à la gestion des déchets d'équipements électriques et électroniques (DEE), et par une réduction des incidences négatives globales de l'utilisation des ressources et une amélioration de l'efficacité de cette utilisation, conformément aux articles 1 et 4 de la directive 2008/98/CE, contribuant ainsi au développement durable.[29] »

La directive DEEE régule la collecte, le retraitement et l'élimination de ces déchets et formule les conditions dans la conception des produits pour intégrer le point de vue du produit en tant que déchet. Cette directive applique le principe de responsabilité élargie du producteur, chargeant les producteurs, les importateurs et les distributeurs de **l'élimination des équipements** une fois ceux-ci usagés, en accord avec la directive.

Pour les équipements électriques et électroniques mis sur le marché, le producteur doit :

- dans le cas où l'utilisation du produit est professionnelle : prendre en charge l'organisation et le financement de l'enlèvement et du traitement du produit en fin de vie, via un système individuel ou en transférant sa responsabilité en adhérant à un éco-organisme agréé;
- dans le cas où l'utilisation du produit est ménagère : transférer sa responsabilité du traitement du produit en adhérant à un éco-organisme agréé, ou mettre en place un système individuel (dans les faits, aucun système individuel n'a été mis en place à ce jour dans le cas ménager).

La directive hiérarchise les traitements par ordre de priorité :

- réemploi (une priorité de la directive déchet)
- opérations de recyclage
- opérations de valorisation
- au moins l'extraction de tous les fluides et un traitement sélectif conforme à la directive.

La filière des DEEE est financée par les producteurs avec un système d'éco-participation pour chaque équipement mis sur le marché. Celle-ci est répercutée au consommateur dans le prix d'achat du produit. Le montant de ladite éco-participation est obligatoirement communiqué sur la facture. Cette éco-participation est provisionnée pour financer notamment les coûts de collecte et de recyclage par le producteur lui-même ou par un éco-organisme selon les cas. Dans le cas de la filière photovoltaïque, les producteurs auront les choix suivants (dans les cas ménagers et professionnels) :

- Adhérer aux éco-organismes existants, si ceux-ci traitent les déchets photovoltaïques;
- Créer un éco-organisme avec d'autres producteurs, sous condition d'obtention d'un agrément par le ministère de l'environnement ;
- Mettre en œuvre un système individuel (sous condition d'approbation par le ministère pour les déchets professionnels uniquement) :
- Demander à l'utilisateur de gérer lui-même ses déchets en lui transférant la REP via un contrat de vente directe. L'utilisateur est alors en droit de négocier les conditions financières du contrat ou de le refuser.

Les États membres de l'UE veillent à ce que tout établissement ou toute entreprise procédant à des opérations de collecte ou de traitement de DEEE, stocke et traite les déchets conformément aux exigences techniques, économiques, environnementales et sociales définies dans la directive. Ces normes incluent aussi l'obligation de retraitement des substances, mélanges et composants dangereux.

La filière des DEEE ménagers

Les producteurs de DEEE ménagers se voient aujourd'hui dans l'obligation d'adhérer à un écoorganisme ou d'établir leur propre système individuel de recyclage. Les DEEE ménagers peuvent être collectés de manière variée, par :

- la distribution, dans le cadre du « un pour un » (le distributeur reprend l'ancien équipement lors de la vente d'un nouvel équipement) ;
- les collectivités qui ont mis en place une collecte sélective (en général en déchèterie),
- les opérateurs du réemploi, lorsque les équipements peuvent être réutilisés.

La filière des DEEE professionnels

Les éco-organismes agrées pour la gestion de la fin de vie des DEEE professionnels sont en phase d'émerger dans le courant de l'année 2012. En attendant la stabilisation de leurs activités, les producteurs s'organisent directement avec les centres de retraitement spécialisés, par le biais de contrats / partenariats directs. Le producteur s'engage à prendre en charge l'organisation et le financement de la collecte et du recyclage avec des prestataires spécialisés. En conséquence, dans le cas où le traitement des déchets est fait individuellement par le producteur, l'ensemble des informations suivantes sont reportées annuellement auprès du représentant du gouvernement chargé de la mise en application de la DEEE (l'ADEME en France):

- Tenue dans les registres des quantités mises sur le marché, collectées, traitées ;
- Types de polluants extraits et traités ;
- Mesures mises en place pour le recyclage des produits (collecte, communication, mécanismes de financement).

Traçabilité et enregistrement

La directive DEEE, en imposant des objectifs de résultats (taux de recyclage de la matière sur la masse totale collectée), impose aussi un système de traçabilité des déchets. Chaque déchet fait alors l'objet de l'enregistrement dans un registre. Les centres de collecte, les agents de transport et les Etude RECORD n° 11-0912/1A

partenaires recycleurs sont également soumis à un cahier des charges spécifiques DEEE imposant notamment les systèmes de tracabilité des déchets. Un label européen a été développé en conséquence. le WEEE Label.

INCLUSION DES PANNEAUX PHOTOVOLTAÏQUES DANS LA DEEE

L'amendement de la directive DEEE incluant les modules photovoltaïques dans la catégorie 4 « Matériel grand public et panneaux photovoltaïques » de la liste des DEEE définie dans l'annexe I sera effective au cours de l'été 2012, après sa publication officielle. Les étapes de la mise en œuvre de la DEEE sont reprises dans le chronogramme de la Figure 41.

Une fois la nouvelle révision de la DEEE en vigueur, les producteurs de modules PV auront la responsabilité de la fin de vie des modules mis sur le marché, et auront alors 2 choix : soit adhérer à un éco-organisme existant ou nouvellement créé, soit mettre en place un système individuel.

Selon la révision de la directive DEEE du mois de janvier 2012, les objectifs minimaux de valorisation visés (représentés sur la Figure 40) sont :

- à compter de la date d'entrée en vigueur de la directive jusqu'à trois ans après l'entrée en vigueur: 75 % * sont valorisés, et 65 % sont recyclés ;
- à compter de trois ans après l'entrée en vigueur de la directive jusqu'à six ans après l'entrée en vigueur : 80 % sont valorisés, et 70 % sont préparés en vue du réemploi et recyclés ;
- à compter de six ans après l'entrée en vigueur de la directive: 85 % sont valorisés, et 80 % sont préparés en vue du réemploi et recyclés.

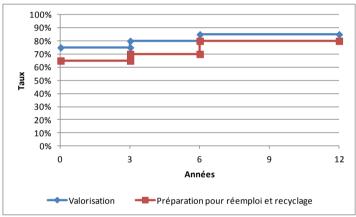


Figure 40 - Objectifs imposés par la directive DEEE

TRANSCRIPTION FRANCAISE DE LA DEEE: DECRET DU CODE DE L'ENVIRONNEMENT PUBLIE PAR LE MINISTERE DE L'ECOLOGIE ET DE L'ENVIRONNEMENT

Cette nouvelle révision de la DEEE, après signature par le Conseil Européen, est transcrite dans chacun des Etats membres. La transcription nationale de la directive peut être plus contraignante, mais pas moins, ne doit pas engendrer de concurrence déloyale avec les autres pays européens et ne peut changer la nature des objectifs ou des movens imposés par la directive.

Le processus de transcription nationale, conduit en France par le ministère de l'Ecologie, du Développement Durable et de l'Energie, a une durée de 14 mois minimum, 18 mois plus

^{*} Les seuils en pourcentage correspondent à des pourcentages massiques :

 $[\]tau = \frac{\text{masse de matière recyclée ou de modules réemployés}}{\tau}$

masse totale de modules collectés dans filière DEEE

Le seuil caractérise la quantité (kg) de déchets retraités parmi la quantité collectée (par opposition à produite). On note que cette manière de comptabiliser permet de favoriser les solutions de réutilisation des prouits en fin de vie.

vraisemblablement. Dans le cas français, le contenu de la directive DEEE doit être inclus dans le code de l'environnement français pour être applicable. A ce délai, s'ajoute une période fluctuante où aucune installation de collecte ni de recyclage n'est encore agréée aux DEEE (sauf celles qui existent déjà maintenant mais qui ne sont pas nécessairement aptes à accueillir les déchets panneaux solaires). Ensuite s'ensuit une période de structuration des acteurs en adéquation avec le cahier des charges imposé par les services publics d'agrément, à laquelle s'ajoutent les délais d'agréments (de 3 mois environ). La mise en application de la directive DEEE en France est donc estimée à l'été 2014.

Une deuxième phase de communication du nouveau décret et d'adaptation et/ou d'agrément des structures de traitement des DEEE aux exigences de la directive impose un délai supplémentaire au début de la mise en application. Dans le cas de l'inclusion des panneaux photovoltaïques dans la directive DEEE, la mise en place de la filière de recyclage sera plus rapide que pour les expériences précédentes étant donné la présence d'acteurs en Europe anticipant la mise en œuvre d'un système de collecte et de recyclage volontaire.

L'agencement de ces différentes phases est représenté sur le chronogramme de la Figure 41.

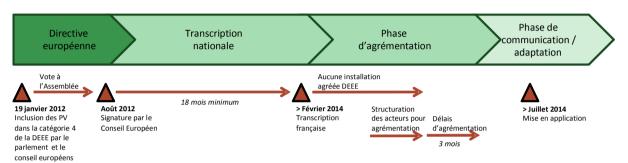


Figure 41 - Chronogramme de la mise en application de la nouvelle révision de la DEEE

Spécificités

La transcription française a pour principales spécificités :

- de définir les déchets photovoltaïques ménagers et professionnels selon leur mode de distribution et non selon la nature de leur utilisation :
 - les modules photovoltaïques vendus dans les grands commerces sont considérés comme des déchets ménagers;
 - o les modules photovoltaïques vendus par le biais d'entreprises spécialisées sont considérés comme des déchets professionnels.
- d'obliger la collecte et le recyclage des panneaux photovoltaïques contenant du cadmium aux frais des producteurs (d'après la réglementation du 25 novembre 2009, codifiée dans le code de l'environnement). Cette réglementation confère une responsabilité pénale quant à la fin de vie de leurs panneaux et comprend une obligation de la part des producteurs de :
 - o mettre en place un système de recyclage ;
 - o mettre en place une collecte gratuite pour les utilisateurs ;
 - o informer ses clients de l'obligation de collecte.

<u>Note</u>: La plupart des pays européens ont établi une transcription de la directive DEEE assez similaire à la transcription française, en-dehors de l'Allemagne dont les spécificités sont détaillées ci-après.

A propos de la mise en place d'éco-organismes spécifiques au recyclage des modules PV, deux scénarii sont possibles :

- Les modules photovoltaïques font l'objet d'une filière spécifique de recyclage: des écoorganismes spécifiques aux déchets photovoltaïques pourraient alors se développer, de
 manière équivalente à Recylum pour les lampes. Dans ce cas, les associations telles que PV
 CYCLE et le CERES pourraient potentiellement acquérir le statut d'éco-organisme agréé dans
 l'hypothèse où elles réussiraient à assumer les tâches administratives associées à la gestion
 des DEEE, dans le respect du cahier des charges.
- Les modules photovoltaïques font l'objet d'une filière généraliste de recyclage : les associations volontaires proposant des programmes de recyclage seraient alors contraintes à

un agrément des pouvoirs publics et pourraient connaître une réduction des flux de déchets captés, face à la concurrence des éco-organismes DEEE.

La décision de la mise en œuvre d'une filière spécifique dépend de la spécificité technologique des procédés de recyclage des modules photovoltaïques ainsi que de la volonté et capacité des producteurs à s'associer pour mettre en œuvre un éco-organisme spécifique, sous condition d'approbation par les pouvoirs publics. Plusieurs arguments sembleraient favorables à la mise en place d'une filière spécifique :

- les lampes, dont le procédé de recyclage est similaire à celui des modules photovoltaïques, font l'objet d'une filière spécifique de recyclage ;
- la composition majoritaire de verre et la structure laminée des modules est différente des DEEE généraux;
- la collecte des modules photovoltaïques présente des exigences spécifiques (bacs de transports anti-casse, séparation des gisements selon les technologies cristallines ou en couches minces, taille relativement importante...).

Il est à noter que l'inclusion des modules photovoltaïques dans la filière générale DEEE aurait un impact important sur la qualité du recyclage des modules photovoltaïques, car :

- les flux de déchets seraient mélangés à des déchets d'autres natures,
- les flux de déchets seraient dilués dans des volumes plus important et répartis parmi un plus grand nombre d'acteurs, alors que des volumes importants d'un gisement homogène justifient plus facilement un investissement élevé pour des installations à haute performance.

TRANSCRIPTION ALLEMANDE DE LA DEEE: ELECTRICAL AND ELECTRONIC EQUIPMENT ACT (ELEKTROG), 16 MARCH 2005 [30]

Spécificités

L'Allemagne se différencie sur certains points de la plupart des autres pays européens notamment :

- en ne se reposant pas sur la structure d'éco-organisme pour la mise en application de la directive ;
- en gérant de manière décentralisée le recyclage des déchets par le biais d'acteurs préexistant dans la filière du recyclage.

L'UBA (Umweltbundesamt) prépare, régule et est garante de la logique scientifique des applications de la DEEE. Elle génère les données pour la Commission Européenne à partir des rapports journaliers des différents producteurs, des autorités locales, des distributeurs et responsables du recyclage. L'UBA est garante de la politique de déploiement des lois à l'échelle nationale, de la bonne orientation des investissements pour le développement de nouvelles technologies de recyclage et de l'information auprès du grand public et des parties prenantes des évolutions de la réglementation.

L'UBA confère son devoir de mise en application de la réglementation de l'ElektroG à l'EAR (« *Elektro-Altgeräte-Register* »). Ce dernier est composé de représentants des différents producteurs soumis à la réglementation permettant de valoriser leurs connaissances de la filière. Cependant, tout le pouvoir exécutif n'a pas été transmis à l'EAR, une supervision restant assurée par l'UBA.

DIFFICULTES, EVOLUTIONS A PREVOIR DANS LA DEEE

Difficultés de mise en application de la DEEE

Depuis 2006, les acteurs de la directive DEEE ont été confrontés à des difficultés de mise en œuvre, notamment dues à la complexité du système :

- Décalage temporel entre la filière des déchets ménagers, mise en place dès le début, alors que le recyclage des déchets professionnels commence tout juste à se structurer fin 2011.
- Difficultés liées à la gestion des déchets passés
- Contraintes administratives liées à l'obligation de contrôle sur les origines du paiement des frais de recyclage, la traçabilité (nécessitant des logiciels spécifiques), la mesure des taux de recyclage...

- Définition nationale du producteur (qui doit être présent sur le territoire national pour porter la responsabilité du traitement de son produit en fin de vie). En raison des multiples manières de définir le producteur national, la notion varie selon les différents Etats membres.
- Définition propre du producteur : « producteur » ou « détenteur » de produits et de déchets.
 Face à un manque de traçabilité sur les produits mis sur le marché, la définition pour un produit donné et isolé est parfois complexe.
- La notion de transformation d'un déchet en un produit a rendu complexe le système et est en passe d'être reprécisée.

Evolutions à prévoir

Mise en commun des systèmes de gestion des différentes filières de REP

Aujourd'hui, plusieurs filières de produit basées sur le principe de Responsabilité Elargie du Producteur sont soumises à des modes de retraitement des déchets équivalents. La loi Grenelle 2 a pour objectif l'harmonisation des différentes filières de REP (DEEE et autres) pour instaurer à long terme un système de gestion homogène commun à l'ensemble des filières. Une harmonisation de ces différents systèmes devrait impliquer des changements d'ordre administratif principalement.

Stimulation de l'intégration du devenir du produit en tant que déchet lors de sa conception

Il existe une volonté actuelle de mettre en place un système de redevance différenciée et indexée à la séparabilité/facilité d'extraction des matériaux des modules. Ainsi les producteurs mobilisant des ressources pour intégrer dans la conception même des produits la phase de recyclage (écoconception) recevraient une contrepartie financière. Ces idées sont aujourd'hui encore au stade d'objectifs à long terme qui pourraient apparaître lors des transpositions par les Etats membres.

Précision dans la définition de producteur

La définition du producteur en tant que porteur de la responsabilité du produit a pu poser des problèmes.

Depuis 19 décembre 2008, pour remédier à ces complications, la nouvelle version de la directive indique que chaque producteur a le droit de désigner un mandataire de sa responsabilité élargie au sein des autres pays européens. De plus la notion de producteur s'est élargie dans le sens de « celui qui met sur le marché dans le territoire national ». Ainsi, en France, la responsabilité du module en fin de vie appartient au producteur, ou à l'entité qui l'a initialement mis en vente sur le territoire national français.

Dans le cas des importations, c'est le distributeur qui a introduit le produit sur le marché français qui porte la responsabilité du produit. Cette problématique est en cours d'approfondissement car l'entité devant porter la responsabilité des produits doit être en mesure de payer les amendes et de mettre en place les moyens nécessaires au traçage et au recyclage des modules photovoltaïques. Dans le cas des achats sur internet, la gestion des responsabilités n'est pas encore détaillée (processus en cours). Par ailleurs, dans la plupart des cas, un interlocuteur français est présent sur le territoire national en amont de l'utilisateur final sur la chaîne de valeur [27].

RoHS

La directive RoHS (Restriction of Hazardous Substances) régule l'utilisation de certaines substances dans les produits, de leur conception à leur état de fin de vie.

Certains éléments contenus dans les panneaux photovoltaïques font partie des substances dont la teneur est limitée dans le cadre de la RoHS (Tableau 22).

Substance	Utilisation dans les PV	Limite supérieure (% massique) *
Cd	Semi-conducteur des modules en couches minces	0,01
Pb, Hg, Cr6+	Soudures, métalliseurs	0,1
PBB (biphenyles polybrominatés), PBDE (diphényl ether polybrominés)	Produit ignifuge sur les câbles, le boîtier de raccordement, les composants électroniques de régulation	0,1

^{* %} massique du composant (~composition homogène) contenant la substance concernée

Tableau 22 - Substances contenues dans les PV et encadrées par la RoHS

Les modules CdTe ou CdS ont des teneurs en cadmium supérieures à la limite définie par la directive RoHS. Par ailleurs Les modules cristallins peuvent, pour certains producteurs, présenter des concentrations en produit ignifuge trop élevées.

RoHS et exemption des modules photovoltaïques

A ce jour, les modules photovoltaïques ne sont pas couverts par la directive RoHS. Plusieurs raisons peuvent l'expliquer :

- Une inclusion des PV dans la RoHS reviendrait à pénaliser une énergie renouvelable, compliquant l'atteinte des objectifs d'incorporation d'EnR dans le mix énergétique européen.
- Le CdS et CdTe ne sont pas considérés comme des composants métalliques et sont donc autorisés par la directive RoHS.
- Des tests ont été menés sur la toxicité des semi-conducteurs des couches minces par lixiviation des modules en fin de vie. Les résultats comparés par le Wuppertal Institute [6] relatent d'une faible toxicité du cadmium sous forme de CdS ou CdTe.
- Il n'est pas encore assuré que les modules photovoltaïques soient considérés comme des biens de consommation. En effet, ils sont, pour la plupart des cas, uniquement manipulés par des spécialistes.

La liste des éléments exemptés de la RoHS est réactualisée *a minima* tous les 4 ans. La dernière révision de cette liste incluait les modules photovoltaïques (Annexe III de la ROHS II (Directive 2011/65/EU du 8 juin 2011)) [31].

Cependant, d'importants producteurs de modules cristallins se sont associés (Alliance NTSA) pour demander la révocation de cette exclusion. Cette action pourrait s'expliquer par la volonté des acteurs cristallins de limiter la concurrence représentée par les technologies en couches minces.

Deux acteurs emblématiques de ce débat autour de l'inclusion ou non des modules CdTe et CdS dans la directive RoHS sont la NTSA (Non Toxic Solar Alliance), qui milite pour l'intégration de ces modules dans la RoHS, et la BSW (German Solar Industry Association), qui s'y oppose.

REACH

La réglementation REACH exige que les fabricants et importateurs de produits chimiques fournissent des informations relatives à la sécurité et aux effets sur la santé des produits chimiques utilisés dans les biens de consommation courante. Cela comprend un large éventail de produits définis dans les annexes de cette réglementation. Les substances sont enregistrées auprès de l'ECHA (European CHemicals Agency). L'agence coordonne l'évaluation des produits concernés et gère la base publique de données dans laquelle consommateurs et professionnels trouvent les informations.

Aujourd'hui encore, l'inclusion dans la réglementation REACH des produits en fin de vie, alors considérés comme déchets, est sujet à débats:

- La directive cadre des déchets et la réglementation REACH, élaborées indépendamment, présentent quelques divergences. En effet, la directive cadre précise que « les déchets ne sont pas une substance, une préparation ou un article » alors que REACH concerne uniquement les substances et préparations, comme le précise l'article 11 du règlement luimême: « Pour assurer la praticabilité et maintenir les incitations au recyclage et à la valorisation des déchets, il convient de ne pas considérer les déchets comme des substances, des préparations ou des articles au sens du présent règlement ». Cependant, eu égard à l'évolution du contexte actuel où le recyclage des déchets et les valorisations des ressources sont en plein expansion, on ne peut ignorer les flux de substances générés par les récupérateurs. Pour répondre à cette incertitude, une publication [32] confirme que les centres de traitement de matières recyclées sont producteurs de substances et devraient enregistrer leurs substances. Cependant tous les produits du recyclage ne sont pas nécessairement des substances, ce qui revient à dire que le produit du recyclage peut, dans certains cas sortir du statut de déchet selon la directive cadre pour être remis sur le marché en tant que substances. Les conditions de changement de statut sont encore en suspens.
- Les matières premières issues du recyclage sont souvent impures et comportent un mélange de substances complexes et difficiles à caractériser. La mise en application REACH pour les déchets pourrait ainsi s'avérer complexe.
- Le problème de traçabilité et d'identification des substances présentes dans les déchets pose une seconde limite technique notable à l'inclusion des déchets dans la réglementation REACH.

Cependant, plusieurs dispositions du règlement REACH englobent les déchets :

- L'évaluation de la sécurité juridique (CSA/CSR) couvre formellement l'exposition à des substances contenues dans les déchets et, lors de l'élimination des émissions, il est tenu compte des émissions qui se produisent à tous les stades du cycle de vie de la substance.
- Les états intermédiaires de la substance sont à prendre en compte (art 18-4) : la substance est confinée rigoureusement par des moyens techniques tout au long de son cycle de vie, comprenant la production, la purification, le nettoyage et l'entretien du matériel, l'échantillonnage, l'analyse, le chargement et le déchargement des cuves ou des dispositifs, l'élimination ou l'épuration des déchets et le stockage.
- Les fiches de données de sécurité sont précisées dans la section 13 : Si l'élimination de la substance ou de la préparation (excédents ou déchets résultant de l'utilisation prévisible) présente un danger, il convient de fournir une description de ces résidus ainsi que des informations sur la façon de les manipuler sans danger [33].

L'articulation REACH / déchets, encore en débat aujourd'hui, constitue un point d'amélioration potentiel d'actualité de la directive-cadre sur les déchets. Une présentation [32] a été publiée par la Commission en 2009 pour faire état des avancées de ce débat.

En conclusion, en l'état actuel, les modules en fin de vie, considérés comme déchets, ne sont pas soumis à la réglementation REACH. Les composants issus du recyclage sont sujets à l'obligation d'être déclarés s'ils diffèrent dans leur nature du composant d'origine.

REGULATION DES EXPORTATIONS DE DECHETS

La convention de Bâle réglemente, à l'échelle mondiale, les exportations des déchets dangereux. Dès 1997, l'ensemble des Etats membres de l'Union Européenne ont ratifié l'amendement concernant l'interdiction des exportations de déchets dangereux. La mise en application de cet engagement est explicitée dans la directive du 14 Juin 2006 n° 1013/2006 sur la réglementation des transferts de déchets transfrontaliers.

En ce qui concerne les DEEE (et donc les PV après transcription nationale de la nouvelle révision de la DEEE), l'exportation est possible uniquement si l'exportateur est en mesure de prouver que le traitement des déchets dans le pays d'accueil des déchets est effectué en conformité avec les exigences de la directive DEEE sur les taux de recyclage, les conditions opératoires, et les normes de traçabilité notamment.

2.2 Cadre réglementaire des Etats-Unis

RESOURCE CONSERVATION AND RECOVERY ACT (RCRA)

Politique de gestion des déchets PV aux Etats-Unis		
Réglementation	Portée	
Resource Conservation and Recovery Act (RCRA)	Fédérale	
Toxicity Characteristics Leaching Procedure Standards (TCLP)	Fédérale, Environmental Protection Agency (EPA)	
Multiple	Etats et niveau local	
SEIA-EH&S Committee	Industries	

Source: PV Recycling

Tableau 23 - Politique de gestion des déchets aux Etats-Unis

La gestion des déchets aux Etats-Unis est basée sur la directive fédérale RCRA (Resource Conservation and Recovery Act), qui concerne :

- la conservation des ressources et le retraitement des déchets
- l'approche « du berceau à la tombe » d'un produit
- les politiques d'Etats, notamment de la HWCL (California's Hazardous Waste Control Law), qui régule la manipulation, le recyclage, la réutilisation, le retraitement et l'enfouissement des déchets.

Il n'y a pas de réglementation spécifique relative aux déchets électriques et électroniques aux Etats-Unis car les programmes de recyclage, lorsqu'ils existent, sont spécifiques à chaque produit. Ainsi les modules photovoltaïques en fin de vie sont-ils soumis directement à la RCRA. La RCRA définit deux classes de déchets : « dangereux » et « non-dangereux ». Un déchet doit donc valider le test d'évaluation de la toxicité TCLP (Toxicity Characteristic Leaching Procedures) par l'EPA (Environmental Protection Agency) pour être considéré comme « non dangereux ». Aujourd'hui, les panneaux sont considérés comme dangereux ou non selon les panneaux. Tout produit introduit sur le marché américain doit passer le test TCLP.

En ce qui concerne le financement des filières de recyclage spécifiques à un produit, les frais de recyclage sont inclus dans le prix final du produit et varient selon le distributeur. Le montant des frais de recyclage est soumis aux lois de l'offre et de la demande du marché.

SPECIFICITES DE LA CALIFORNIE [4]

La Californie, pionnière aux Etats-Unis dans le domaine de l'environnement, a adopté un ensemble de réglementations spécifiques ou non aux modules photovoltaïques, liées à la gestion des déchets dangereux. Le gouvernement de Californie :

- est en passe de publier une réglementation sur le recyclage des modules photovoltaïques; elle concerne, entre autres, la composition des modules photovoltaïques en interdisant l'utilisation de Diphényléthers brominés (PBDEs) et imposant l'utilisation de substituts nontoxiques, non-persistants et non-bio accumulateurs aux produits ignifuges brominés (BFRs);
- a mis en place en 2003 un programme de recyclage des DEEE (E-Waste Recycling Act), ajoutant 6 à 10 \$ au prix de chaque produit pour provisionner ses frais de recyclage. Cependant, les modules photovoltaïques ne sont pas à ce jour reconnus comme déchets électroniques et donc pas soumis à cette réglementation.

L'unique loi de l'Etat qui concerne la gestion des modules photovoltaïques en fin de vie ne précise que l'interdiction d'enfouir des déchets dangereux. Confrontés à ce manque de prise en charge des déchets dangereux, les gouvernements locaux s'associent pour changer la politique de gestion de ces déchets et opérer un transfert de responsabilité du traitement des déchets dangereux des

consommateurs vers les producteurs. Le CALPSC (CALifornia Product Stewardship Council) travaille aujourd'hui à la mise en place du principe de responsabilité élargie du producteur en Californie.

2.3 Cadre réglementaire japonais [4]

Il existe au Japon une loi imposant la collecte et le recyclage aux frais du distributeur des produits électroménagers de grande taille (réfrigérateurs, etc...). Cependant cette loi n'inclut pas les produits électriques et électroniques.

2.4 Cadre réglementaire chinois

REGULATIONS ON RECOVERY PROCESSING OF WASTE ELECTRICAL AND ELECTRONIC PRODUCTS – CHINA WEEE

Rédigée en 2008, approuvée en 2009, et mise en application à compter du 1^{er} janvier 2011, cette réglementation a pour objectif de standardiser le processus de traitement, valorisation et réutilisation des produits issus des déchets électriques et électroniques en circuit fermé, pour la protection de l'environnement et de la santé. Sont réglementés :

- la réduction des déchets non-réutilisés,
- l'élimination de composants dangereux par la modification de leurs propriétés physicochimiques
- · le traitement des déchets pour les rendre conformes aux conditions d'enfouissement

L'Etat chinois est en charge de mettre en place un système de collecte et de retraitement des déchets.

Le catalogue des produits concernés par la *China WEEE* à été publié en 2010 et ne contient pas les modules photovoltaïques. Cependant le périmètre de ce catalogue devrait être élargi lorsque les premières autres filières de recyclage seront mises en place [34].

La réglementation définit les devoirs des producteurs ou importateurs de produits des catégories définis dans le catalogue :

- Paiement des frais nécessaires à la mise en place d'un système national de collecte et retraitement des déchets
- Prise en compte au stade de la conception du produit de son impact environnemental, notamment en évitant l'utilisation de substances dangereuses
- Devoir d'informer les consommateurs sur les substances dangereuses potentiellement présentes dans le produit
- Devoir de marquer sur le produit les informations nécessaires au bon déroulement de la collecte et du recyclage des produits

La réglementation mentionne également les points suivants :

- L'encouragement de la nation pour les recherches scientifiques pour le développement de nouvelles technologies.
- L'interdiction d'importation de produits considérés comme déchets électriques et électroniques interdits.
- L'encouragement des différents acteurs (producteurs, distributeurs, services après-vente et services de maintenance) à organiser une filière commune de recyclage, dont l'entreprise opérant le procédé de recyclage serait agréée par le gouvernement.
- La préservation de la confidentialité même dans la phase de réparation ou recyclage de produits dont la fabrication est confidentielle.
- La mise en place par les acteurs du recyclage d'un système de traçabilité des DEEE. Ces bases de données sont conservées pour une durée de 3 ans au minimum et sont consultables par le département de la protection de l'environnement du gouvernement chinois.
- Tout acteur en lien avec les déchets électroniques doit être conformes aux normes nationales de la « Regulations on Corporate Registration of the People's Republic of China »

La principale différence entre la DEEE chinoise et la DEEE européenne est que les utilisateurs et producteurs d'équipements électriques et électroniques chinois attendent un revenu ou une Etude RECORD n° 11-0912/1A

contrepartie des déchets qu'ils génèrent et confient aux entreprises agréées par le gouvernement. Ainsi, les entreprises de recyclages doivent entièrement assumer financièrement les frais de recyclage et ce, dans des conditions d'hygiène et de sécurité coûteuses. Cette différence clef rend difficile l'activité de recycleurs agréés face à la concurrence des nombreuses petites entreprises de recyclage informelles et non-conformes [35].

Il est aussi important de souligner l'impact sociétal de la mise en place d'un système organisé de collecte et de recyclage sur les nombreux acteurs actuels du recyclage, n'étant pas en mesure de mettre aux normes leurs pratiques. En effet, il existe aujourd'hui un écosystème complet dépendant des flux de déchets électriques et électroniques.

Par ailleurs, on note que malgré l'interdiction d'exporter les déchets électroniques dangereux (dont les modules photovoltaïques) vers la Chine, des flux importants de déchets continuent d'exister en bénéficiant du cadre réglementaire moins restrictif de Taiwan et Hong Kong, servant alors de relais pour légaliser les importations [36].

2.5 Contexte réglementaire indien

L'Inde dispose d'une structure réglementaire concernant les déchets portée par le bureau central du contrôle de la pollution (CPCB – « Central Pollution Control Board ») via le « Environmental Protection Act ». Une nouvelle loi spécifique au retraitement des déchets électroniques met en œuvre le principe de responsabilité élargie du producteur depuis 2011 : « e-Waste Management and Handling rules ». Le CPCB délivre des autorisations aux acteurs variés de la filière de recyclage leur permettant de gérer des déchets électroniques [37].

2.6 Conclusion sur la réglementation

Seules l'Europe et la Californie se sont dotées de lois spécifiques au retraitement des modules photovoltaïques. Pour le reste des pays ne présentant pas de cadre réglementaire spécifique, le retraitement est réglementé par les directives générales sur l'environnement, la santé, la sécurité et le retraitement des déchets. Il est important de souligner que l'ensemble des pays actifs sur le marché du photovoltaïque disposent *a minima* d'un cadre réglementaire pour le retraitement des déchets. La qualité de mise en application de ces réglementations est fluctuante d'un pays à l'autre, notamment en ce qui concerne les exportations illégales de déchets dangereux.

Le principe de responsabilité élargie du producteur est déjà appliqué en Europe, en Inde, en Californie et en Chine pour certains déchets spécifiques. La mise en œuvre d'une autre filière de recyclage basée sur ce même principe serait facilitée.

Les expériences passées de mise en place d'autres systèmes de reprise et de récupération de déchets spécifiques montrent qu'un programme volontaire de reprise et de recyclage des déchets requiert une transparence envers les entités régulatrices. Un système de traçabilité, reposant sur des outils de mesure et d'évaluation des résultats, est en outre une condition nécessaire à la reconnaissance d'un programme volontaire.

Par ailleurs, selon Ökopol [1], un système de reprise et de récupération de déchets spécifiques gagne à être établi par un panel varié d'acteurs. Les situations de monopoles d'un acteur responsable de la coordination de l'ensemble des acteurs de la filière seraient à éviter.

Dans le cas de la mise en place d'une filière spécifique pour les déchets photovoltaïques dans le cadre de la DEEE, une amélioration des performances de recyclage et les acteurs actuels de la filière photovoltaïques seraient potentiellement favorisés. Cependant,, la mise en place d'éco-organismes spécifiques aux déchets photovoltaïques peut présenter un risque important d'oligopole et interdépendance entre les éco-organismes et les centres de retraitement spécialisés.

3. Etudes des procédés de recyclage et des nouvelles technologies de la filière

La filière complète du recyclage des modules photovoltaïques comprend un nombre varié d'activités : de la collecte à la revente des matières recyclées, en passant par le démantèlement, la purification de fractions spécifiques, puis la réutilisation de ces dernières. L'ensemble de ces activités sont résumées et structurées dans le diagramme ci-dessous (Figure 42).

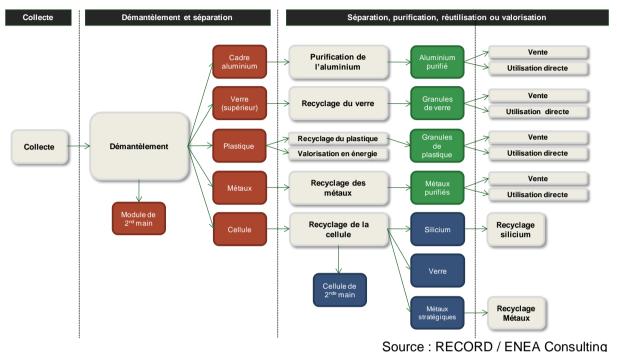


Figure 42 - Etapes du recyclage d'un module photovoltaïque

Note: Au cours de l'étude, les notions suivantes sont différenciées:

- **Technologies de recyclage** qui caractérisent une technologie spécifique à une étape d'un procédé de recyclage plus global.
- **Procédés de recyclage** qui caractérisent un ensemble de technologies permettant la séparation et/ou la valorisation des composants d'un panneau PV.

Aide à la lecture de la partie traitant des technologies et procédés de recyclage :

Depuis les années 1990, de nombreuses technologies puis procédés de recyclage ont été élaborés. L'inventaire des technologies et procédés développés pour le recyclage des modules photovoltaïques qui suit espère être aussi exhaustif que possible :

- sur les technologies et procédés de démantèlement et délaminage des modules en fin de vie ;
- sur les technologies et procédés de récupération de semi-conducteurs issus du délaminage de modules en fin de vie exclusivement.

En revanche, l'étude ne se veut pas exhaustive sur les points suivants :

- technologies et procédés de recyclage des déchets de semi-conducteurs issus de la production ;
- procédés de purification des fractions variées issues du délaminage des modules (verre, aluminium, fraction organique...).

Seuls quelques exemples de retraitement de ces types sont étudiés pour montrer l'intérêt qu'ils représentent pour la filière de recyclage des modules photovoltaïques (évolution potentielle de la technologie vers un procédé de délaminage, par exemple).

Par ailleurs, les procédés pour lesquels très peu d'informations sont disponibles sont évoqués directement dans la partie <u>acteurs</u>.

Cet inventaire renseigne sur le fonctionnement du procédé et/ou des technologies ainsi que leurs caractéristiques techniques, leurs forces et faiblesses respectives et, dans la mesure du possible, leur impact environnemental.

Les opérations de recyclage des panneaux photovoltaïques sont pour la plupart communes au recyclage de nombreux autres déchets. Un panel varié de procédés ont été testés sur les modules photovoltaïques. La liste des types de procédés explorés depuis le début des années 1990 est détaillée dans le Tableau 24 suivant.

Types de Procédés	Procédé		
Procédés mécaniques	Broyage / criblage		
	Attrition		
	Séparation manuelle		
	Séparation par filtration		
Procédés physiques	Séparation magnétique		
	Séparation par différence de densité		
	(cyclonage, tamis vibratoire, vis sans fin)		
	Séparation au laser optique		
	Séparation par de l'énergie acoustique		
	Séparation solide / liquide		
	Distillation / séparation par évaporation		
Procédés chimiques	Traitement acide/base		
	Traitement par solvant (minéral ou organique)		
	Décapage		
Procédés hydro-	Lixiviation		
métallurgiques	Extraction par solvant		
	Précipitation Electrolyse		
Procédés pyro-	Procédé thermique, oxydation et purification		
métallurgiques	des métaux		
Procédés thermiques	Pyrolyse		
	Augmentation de la température de certains		
	composants		
	Refroidissement		
Procédés biologiques	Décomposition par voie bactérienne		
Divers	Valorisation énergétique		
	Incinération Enfouissement		
Traitement de surface (wafers)	TTS : décapage, polissage, texturisation		

Source : [1] revu par RECORD / ENEA Consulting

Tableau 24 - Ensemble des procédés testés ou utilisés pour le recyclage de modules photovoltaïques

Face aux défis que représente le recyclage des modules photovoltaïques, des technologies et des procédés de recyclage spécifiques ont été élaborés en plus des opérations habituelles de recyclage, dans le cadre de programmes de recherche, ou par des industriels avec des objectifs d'optimisation du recyclage de ces modules.

Note: Les deux points sensibles sujets à de nombreux travaux de recherche sont essentiellement :

- La séparation des cellules cristalline de l'encapsulant (EVA en particulier)
- La récupération de métaux dans les modules en couches minces.

Ces différentes technologies et programmes de recherche sont listés puis présentés en détail ciaprès, selon la méthodologie suivante :

Méthodologie et explicitation des champs d'analyse de l'ensemble des technologies et procédés

Pour chacune des technologies sont précisés :

- Le contexte de développement du procédé, ses zones géographiques d'implantation et son niveau de maturité
- Ses performances
 - o Taux de recyclage global :

$$\tau = \frac{\sum Quantit\'e \ de \ mati\`ere \ recycl\'ee \ ou \ r\'eutilis\'ee}{\sum \ Quantit\'e \ totale \ de \ mati\`ere \ entrante \ (module)}$$

Taux de recyclage spécifique des éléments clés (verre, métaux stratégiques...)

$$\tau = \frac{\sum \ \textit{Quantit\'e du composant sp\'ecifique recycl\'ee ou r\'eutilis\'ee}}{\sum \ \textit{Quantit\'e totale du composant}}$$

Coût du recyclage

Le coût-type du recyclage d'un module en fin de vie n'est pas évaluable pour différentes raisons :

- La filière, encore peu mature, ne dispose que de peu d'informations disponibles publiquement, et les coûts publiés sont parfois surévalués ;
- Le faible facteur de charge des unités commerciales rend les chiffres existants peu représentatifs ; les coûts communiqués pour les pilotes sont difficilement transposables à l'échelle industrielle ;
- Le coût du recyclage dépend d'un grand nombre de variables indépendantes et spécifiques à chaque lot de recyclage (prix des matières premières sur le marché, volumes du lot de recyclage, type et qualité des modules intrants, distance à la source....).

Dans l'étude des procédés ci-après, pour faire face à cette limite, la performance économique d'un procédé est simplement évaluée par sa rentabilité. Lorsqu'il est qualifié de « rentable » (respectivement « non-rentable »), cela signifie que les frais de recyclage sont (respectivement ne sont pas) couverts par les gains issus des matières premières recyclées et revendues.

Impact environnemental

Pour l'évaluation de l'impact environnemental des procédés, la nature et les caractéristiques des différents effluents du procédé sont qualifiés de manière objective, de même que sont mentionnés les postes de consommation d'énergie majeurs du procédé, dans la mesure des données disponibles. Ainsi, ces qualifications ne peuvent-elles pas être comparées d'un procédé à l'autre. Les données disponibles étant très limitées, la mise en place d'un système plus abouti d'évaluation de l'impact environnemental ne semblait pas pertinente.

- Sa sensibilité au type de modules intrants
 - La sensibilité correspond à la capacité du procédé à tolérer des types de modules plus ou moins variés. Pour certains procédés, une « sensibilité faible » à tous types de technologies est mentionnée : elle illustre la capacité du procédé à traiter indifféremment des modules en couches minces et cristallins. Au contraire une « sensibilité élevée » à la qualité des modules souligne la variabilité des performances de recyclage du procédé selon la qualité, l'âge, le fabriquant ou l'état des modules à recycler d'un seul et même type (en couches minces ou cristallins).
- Sa capacité théorique (« importante » ou « faible » en ce qui concerne les volumes relatifs à la capacité de l'installation) et le volume annuel traité
- Ses spécificités et propriétés générales
- La main d'œuvre requise pour les opérations du procédé

Sa dangerosité : « dangereux » ou « inoffensif » en ce qui concerne la toxicité potentielle des effluents pour les hommes ou l'environnement.

3.1 Procédés et technologies non utilisés / abandonnés / ayant échoué

Seront détaillés dans l'étude uniquement les procédés et technologies ayant été breveté avec succès, développés ou commercialisés, ou faisant encore l'objet de recherches approfondies. Cependant, l'ensemble des programmes de recherche ayant échoué ou ayant été abandonnés depuis longtemps ont été listés ci-dessous.

Type de procédé Mené par Etat				
Synergie de recyclage des	Relux & DELA,	Echec pour des raisons autres que		
ampoules des lampes à décharge à gaz contenant du mercure	2010 [38]	technologiques mais confidentielles		
Traitement de l'EVA avec des bactéries	Dr.Wambach [39]			
Nettoyage abrasif	Dr.Wambach [39]			
Pyrolyse par chauffage micro- ondes / irradiations	Dr.Wambach [39]	Echec car température distribuée de manière non-uniforme dans les modules, nombre de cellules brisées important		
Dissolution de l'EVA par des solvants organiques	Electrotechnical Laboratory (Japon), 2001 [2]	Plus d'activité depuis 2001		
Dissolution des modules dans un réacteur chimique alimenté par du TEG (Tri-Ethylène-Glycol) entre 220°C et 290°C	T.Doi et al 2001 [40], Tsukuka	Echec car l'EVA gonfle sans se dissoudre		
Incinération dans l'atmosphère	K.Wambach 1998 [41]			
Immersion dans de l'acide nitrique chaud	BP Solar – Burton et al 1994 [42]	Efficace mais coûteux avec un impact environnemental lourd, quantité de HNO ₃ requise très importante et besoin d'une distribution non-uniforme de la température. Procédé efficace sur certaines formulations spécifiques d'encapsulant uniquement		
Séparation par jets d'eau à haute pression	Siemens Solar, Shell Solar, Showa Shell. Fthenakis and Moskovitz [2]	Système de délaminage du module par l'exercice de la pression du jet d'eau sur les composants du module. Peu d'informations sont disponibles à propos du développement de cette technologie.		
Réutilisation comme agrégats pour les fours de fontes métallurgiques	Fthenakis and Moskowitz [2]	Cette voie de recyclage consiste à fondre les modules photovoltaïques et les réutiliser comme agrégats pour la production de ferro-silicium. Le coût de fonte, transport inclus, est compris entre 0,04 \$/Wc et 0,12 \$/Wc, et reste inférieur aux coûts d'enfouissement.		
Séparation de l'EVA par gonflement avec du limonène d'agrumes (CELLSEPA ^R)	Deutsche Solar AG [2]	Ce procédé ne permet pas de récupérer toutes les cellules et requiert une durée de mise en contact avec le limonène trop longue.		
Séparation de l'EVA et du TEDLAR par un procédé thermique progressif: Le Tedlar est retiré manuellement et l'EVA est séparé par un procédé thermique de pyrolyse dans une atmosphère de gaz inertes à 500°C.	First Solar 2008 [2]	Couts de recyclage de 0,13 \$/Wc alors que la production d'une nouvelle cellule est de l'ordre de 1,5\$/Wc (en 1998). Le procédé n'est pas utilisé.		

Type de procédé	Mené par	Etat
Séparation de l'EVA avec du limonène naturel (breveté)	AIST, Sharp, Asahi puis Toa Kagaku and AIST [43]	Du d-limonène naturel concentré à 97%, issu de la distillation de citrons, a été testé comme agent de séparation de l'EVA. Les enflures provoquées par l'EVA lorsqu'il est trempé pour une durée de 500 heures dans le limonène rendent le délaminage facile. Cette durée de trempage peut être réduite par 4 en agitant la solution avec un vibreur sonore. La durée de trempe à été un facteur déterminant de l'échec de cette technologie

Tableau 25 - Liste des recherches ayant échoué ou n'ayant pas été poursuivies

3.2 Les technologies de recyclage (parties d'un procédé plus complet)

ANTEC SOLAR GMBH – RECYCLAGE DU CDTE/CDS DES CELLULES EN COUCHES MINCES

Antec Solar, à l'origine producteur de modules en couches minces, a breveté plusieurs technologies de recyclage du CdTe et CdS des cellules de modules en couches minces. Il n'est en revanche pas fait mention dans la littérature d'usines opérées sur la base de cette technologie.

Recyclage du CdTe et du CdS dans les modules en couches minces - [44]

Numéro de brevet : WO/2000/047343 Method and apparatus for etching coated substrates

Numéro d'enregistrement : 09/939390 Date de publication : 03/06/2003

Inventeurs: Campo, Manuel Dieguez (Hanau, DE), Bonnet, Dieter (Friedrichsdorf, DE), Gegenwart,

Rainer (Erfurt, DE), Beier, Jutta (Hofheim, DE)

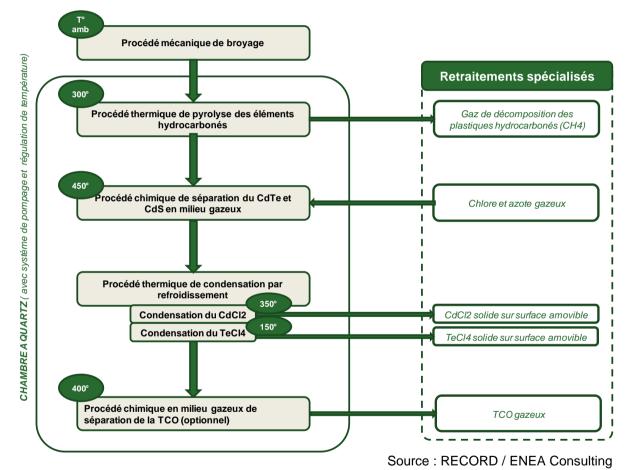


Figure 43 - Schéma bloc de la technologie Antec Solar de recyclage par voie gazeuse de modules en couches minces de type CdTe

Description de la technologie

Procédé mécanique de broyage :

L'invention consiste en une première étape de réduction des modules en fragments de 1 à 10 cm par un procédé mécanique de broyage.

Procédé thermique de pyrolyse des éléments hydrocarbonés :

Les fragments sont ensuite chauffés à au moins 300°C en présence d'oxygène pour entraîner la pyrolyse des fragments d'encapsulant (plastiques composés d'éléments hydrocarbonés). Les gaz

issus de la décomposition sont évacués par une pompe de capacité de 1 l/h et peuvent être entièrement brûlés (CH₄) pour de la revalorisation énergétique des composés gazeux. La température est un optimum de manière à réduire le temps de pyrolyse (intérêt pour une température élevée), tout en respectant le facteur limitant qu'est la température d'évaporation du cadmium. Une pyrolyse sera en moyenne 5 minutes plus brève à 400°C qu'à 300°C. La pyrolyse peut durer de 10 à 15 minutes.

Procédé chimique de séparation du CdTe et CdS en milieu gazeux :

Les fragments de modules sont ensuite soumis à un procédé chimique à haute température de corrosion des métaux par le chlore en les chauffant à plus de 400°C (optimum à 450°C, maximum 500°C selon la qualité du verre, pour éviter sa fonte) dans une atmosphère concentrée en chlore, diluée à l'azote pour empêcher les phénomènes de combustion. La pression partielle du chlore varie de 1% à 10% de la pression partielle de l'azote. La pression est maintenue entre 100 et 600 mbar dans l'enceinte du réacteur. Ces conditions provoquent le décapage des fragments découverts de tout encapsulant où du CdCl₂ et du TeCl₄ sont produits.

Procédé thermique de condensation par refroidissement :

Le CdCl₂ et TeCl₄ sont ensuite condensés séparément. Dans un premier temps, les gaz issus du décapage et contenant le CdCl₂ et le TeCl₄ sont refroidis à une température de 350°C à laquelle le CdCl₂ précipite sur une surface amovible spécifique. Dans un second temps, les gaz sont refroidis à 150°C pour précipiter le TeCl₄ sur une autre surface spécifique. La structure de l'installation permet la condensation dans des pièces séparées des différents semi-conducteurs. Le décapage peut durer de 0,5 à 5 minutes selon les conditions de pression et de température dans l'enceinte. L'étape de refroidissement permet de récupérer le CdCl₂ et TeCl₄ alors formés.

Procédé chimique de séparation de la TCO en milieu gazeux (optionnel) :

Le procédé additionnel de décapage de la couche de TCO avec du HCl dilué dans l'azote à 1/100 peut être appliqué pour obtenir un verre recyclé de meilleure qualité (InCl₃, SnCl_{2,4} et H₂O). La température requise pour cette opération est comprise entre 400°C et 520°C selon les types de substrats de verre.

Les procédés thermiques sont effectués dans une chambre à quartz avec des systèmes de pompe et de régulation de température intégrés. Les métalliseurs en molybdène ou nickel sont séparés en même temps que le CdCl₂ et le TeCl₄ mais peuvent être séparés sélectivement si besoin.

Caractérisation des intrants et sortants de la technologie

INTRANTS – Déchets à traiter	SORTANTS – Produits recyclés
Modules en fin de vie	Verre
Débris issus de la production	CdCl ₂
	TeCl ₄
	InCl ₃ , SnCl _{2,4} et H ₂ O
	Fumées de pyrolyse des éléments hydrocarbonés

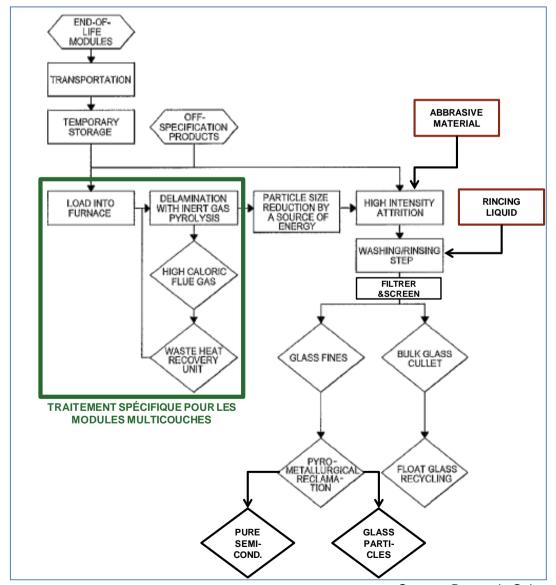
Avantages	Inconvénients	
Séparation fractionnée des métaux permettant de récupérer les métaux stratégiques indépendamment et pré-purifiés.	Technologie très énergivore (broyage en particules fines + procédé thermique comportant deux étapes à plus de 400°C)	
Technologie par voie sèche en milieu gazeux uniquement, ne générant aucun effluent liquide ou solide.		
Valorisation énergétique possible des composés hydrocarbonés.	Nécessité d'un retraitement spécifique des effluents gazeux.	

CALYXO - RECYCLAGE DES COUCHES MINCES

Basée en Allemagne et aux Etats-Unis, Calyxo est une entreprise productrice de modules photovoltaïques en couches minces à base de CdTe.

En 2008, John Bohland, à l'époque président de Calyxo, et Andreas Wade, en charge du développement durable, émettent des brevets sur plusieurs technologies de recyclage des modules en couches minces, et en particulier des technologies CdTe.

Ces technologies sont basées sur des traitements thermiques et mécaniques, mais ne sont pas ceux utilisés actuellement par la société Calyxo. En effet, il semblerait que Calyxo se soit associée à un partenaire de recyclage dont le procédé est basé sur un traitement chimique. [45]


Recyclage du CdTe et du CdS dans les modules en couches minces [46]

Numéro de brevet : WO/2010/019767 A1 - « Photovoltaic module recycling »

Numéro d'enregistrement: PCT/US2009/053705

Date de publication: 18/02/2010

Inventeurs: John Bohland et Andreas Wade

Source : Brevet de Calyxo [46]

Figure 44 - Schéma bloc de la technologie de recyclage de modules en couches minces brevetée par Calyxo

La technologie concerne le recyclage de modules photovoltaïques en couches minces. Elle peut également être appliquée à des modules de structure plus complexe (dit *multicouches*), moyennant une étape préalable de délaminage des couches de verre contenant des matériaux semi-conducteurs par pyrolyse dans un mélange d'oxygène et de gaz inertes tels que l'azote ou l'argon.

Procédé mécanique de réduction du module photovoltaïque en particules par sources d'énergies diverses

La spécificité de ce procédé est de ne pas faire intervenir un broyage mécanique du module, afin de maximiser le rendement des procédés et de minimiser les coûts d'opération.

Alors que les composés autres que le verre (câbles, tedlar, etc...) sont séparés par des procédés mécaniques spécifiques, le module est réduit en particules de verre de tailles variées et contenant les matériaux semi-conducteurs. Plusieurs méthodes sont citées selon la source d'énergie utilisée :

- Energie thermique (ex : flux de vapeur, d'azote liquide, ou d'eau à une température donnée) ;
- Energie acoustique;
- Combinaison des deux ;
- Autre méthode, distincte du broyage mécanique direct.

Procédé mécanique d'attrition intense : Séparation du verre et des matériaux semiconducteurs

La séparation du verre et des matériaux semi-conducteurs peut être effectuée par attrition (abrasion des surfaces) notamment en utilisant un produit tensio-actif (agent de surface chimique). Le procédé d'attrition est effectué dans la même enceinte que le procédé mécanique de réduction en particules.

Séparation solide/liquide : Rincage, filtration et séparation par tamis vibratoire

Les particules fines de verre et de semi-conducteurs qui auraient pu rester collées sur le calcin de verre lors de l'étape précédente sont séparées des calcins de verre par rincage.

Une première filtration à travers un tamis permet de séparer les particules solides de tout liquide résiduel issu des étapes précédentes.

Une seconde étape de filtration peut être opérée à travers un autre tamis pour séparer le calcin des autres particules solides. Des tamis vibratoires pourront être utilisés. A l'issue de cette étape, trois fractions sont obtenues :

- fraction liquide libre de toutes particules solides
- fraction solide composée principalement de calcins de verres
- fraction solide de particules fines de verre et de semi-conducteurs

Purification pyro-métallurgique de la fraction de particules fines

Les particules fines de verre et les particules de matériaux semi-conducteurs sont retraitées dans un procédé pyro-métallurgique de séparation des métaux. A l'issue de ce procédé des métaux purifiés peuvent être obtenus.

Recyclage de la fraction de calcins de verre

Le calcin récupéré lors de l'étape de filtration est dirigé vers un procédé parallèle de recyclage de verre flotté.

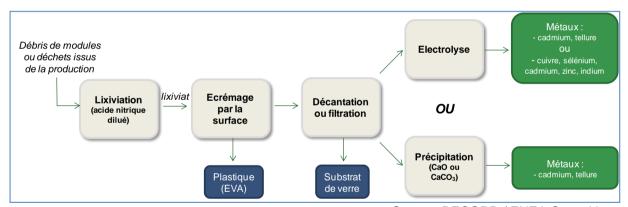
Caractérisation des intrants et sortants de la technologie

INTRANTS – Déchets à traiter	SORTANTS - Produits recyclés
Modules en fin de vie	Composants autres que le verre et les semi- conducteurs
Modules issus de la production qui ne répondraient pas aux exigences de qualité	Calcins de verre
	Particules fines de verres purifiées
	Métaux stratégiques purifiés
	Effluents liquides (potentiellement pollués par les métaux)
	Effluents gazeux (potentiellement pollués par les métaux)

Avantages	Inconvénients
Offre une solution alternative au procédé de broyage énergivore	Génération d'effluents de natures variées (liquides, gazeux et solides) impliquant des coûts de retraitement des effluents importants
Obtention d'un verre d'une pureté suffisante pour être recyclé dans l'industrie du verre flotté	Niveau de définition des étapes clefs encore vague
Selon les dires du brevet : coûts de recyclage réduits par rapport aux procédés de broyage et hydro-métallurgique.	

DRINKARD METALOX INC (DMI) – RECYCLAGE DES COUCHES MINCES PAR HYDROMETALLURGIE

Description des activités


Drinkard s'est vu confié par le DOE (Department of Energy) américain un projet de recherche de deux ans sur le recyclage des modules PV en couches minces (CIS et CdTe) à la fin des années 1990. Trois brevets américains ont été déposés à l'issue de ce projet :

U.S. Patent No. 5 779 877	14/07/1998	Recycling of CIS Photovoltaic Waste	William F. Drinkard Mark O. Long Robert E. Goozner
U.S. Patent No. 5 897 685	27/04/1999	Recycling of CdTe Photovoltaic Waste	Robert E. Goozner Mark O. Long William F. Drinkard
U.S. Patent No. 5 997 718	07/12/1999	Recycling of CdTe Photovoltaic Waste	Robert E. Goozner Mark O. Long William F. Drinkard

Les technologies hydro-métallurgiques proposées sont basées sur des phénomènes de lixiviation avec de l'acide nitrique dilué. Le lixiviat est ensuite traité afin d'en récupérer les plastiques (incluant l'encapsulant) et le substrat de verre.

Selon les technologies, les matériaux semi-conducteurs sont récupérés soit par précipitation grâce à l'ajout d'une solution contenant du calcium (CaCO₂), soit par électrolyse du lixiviat (CdTe et CIS).

Un schéma récapitulatif des procédés Drinkard est présenté ci-dessous :

Source: RECORD / ENEA Consulting

Figure 45 - Schéma-bloc de la technologie Drinkard (couches minces)

Caractérisation des intrants et sortants de la technologie

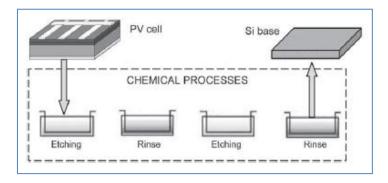
INTRANTS – Déchets à traiter	traiter SORTANTS - Produits recyclés	
Débris issus de la production	EVA	
	Verre	
	Métaux précipités sélectivement	
	Lixiviat (acide nitrique dilué)	

Avantages	Inconvénients
Offre une solution mature de retraitement de débris issus de la production ou de modules broyés	Utilisation massive d'acide nitrique

GDANSK UNIVERSITY – TRAITEMENT CHIMIQUE DES CELLULES CRISTALLINES

La recherche menée par la faculté de Chimie de l'Université de Gdansk a pour objectif de définir une technologie de décapage efficace sur l'ensemble des cellules photovoltaïques de fabricants variés. Le principal défi est donc de proposer des solutions décapantes efficaces sur un ensemble de revêtements antireflets et de dopants de natures variées. Bien que l'article de E. Klugmann-Radziemska, P. Ostrowski [47] montre les limites en termes d'efficacité d'une solution décapante universelle, une composition type optimum a été définie. L'étude porte sur le recyclage de cellules défectueuses issues de la production ou de cellules issues de modules en fin de vie, séparées de leur encapsulant par un traitement chimique non détaillé.

TRAITEMENT CHIMIQUE PAR LA GDANSK UNIVERSITY Nom de la technologie Traitement chimique de traitement des


Nom de la technologie	Traitement chimique de traitement des cellules solaires pour la récupération de silicium solaire pur		
Nom des partenaires menant la recherche	Chemical Faculty of Gdansk University		
Technologies de modules traitées	c-Si		
Zone d'implantation	Pologne		
Date de publication	1 ^{er} décembre 2009		
Niveau de maturité	R&D		
Performances de la technologie			
Consommation énergétique	Besoin de légèrement chauffer la solution Mélange en continu du milieu réactionnel		
Effluents et émissions	Effluents liquides : solution décapante et eaux de rinçage polluées Effluents gazeux : émissions de gaz toxiques lors des réactions chimiques de décapage		
Caractéristiques			
Sensibilité au type de module	Très élevé – performance réduite si pas d'adaptation spécifique des paramètres de la technologie aux types de cellules traitées		

Mise en application

Q-cells et Gdansk University auraient discuté de la mise en place d'un partenariat. Cependant les conditions non favorables actuelles du marché photovoltaïque ont provoqué l'arrêt du projet.

Résultats de la recherche

Le traitement des cellules photovoltaïques cristallines consiste en un procédé chimique composé de deux étapes de décapage successives permettant la séparation des métalliseurs (supérieurs ou inférieurs) puis du revêtement antireflet et de la jonction p-n.

Source : [47]

Figure 46 - Technologie de décapage de cellules cristallines développée par Gdansk University

Les principales contraintes de la recherche sont liées à l'utilisation de produits chimiques toxiques et aux phénomènes auto-catalytiques de la réaction qui rendent la mise en œuvre du procédé complexe et coûteuse.

1ère étape: Séparation des métalliseurs

La cellule est plongée dans une solution d'hydroxyde de potassium KOH concentrée à 30% à une température de 60°C à 80°C et pour une durée de 2 à 3 minutes. Le milieu réactionnel est mélangé.

2^{ème} étape : Rinçage

La cellule est rincée à l'eau des éventuelles traces de la solution de décapage de la 1^{ère} étape.

3ème étape : Séparation du revêtement antireflet et de la jonction p-n

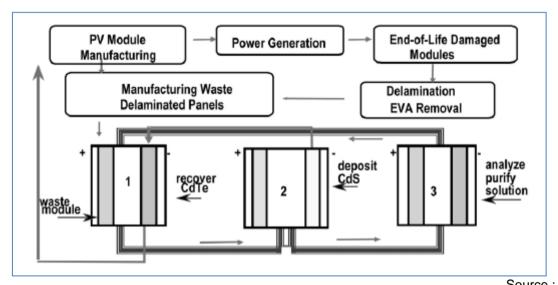
La cellule est plongée dans une solution dont la composition est détaillée dans le **Tableau 26**, à une température de 40°C et pour une durée de 9 secondes. Le milieu réactionnel est mélangé.

Symbole	Nature	Concentration	Volumes		Part relative
HNO3	Acide Nitrique	65%	250	mL	45%
HF	Florure d'Hydrogène	40%	150	mL	27%
СНЗСООН	Acide Acétique	99,5%	150	mL	27%
Br2	Brome	100%	3	mL	1%

Tableau 26 - Composition de la solution de décapage des revêtements antireflet de la technologie de la Gdansk University

Ces résultats correspondent à un optimum entre la pureté des cellules (quantité de revêtement non séparé) et l'état du silicium (dont l'épaisseur ne doit pas être trop réduite). A ces facteurs d'optimisation s'ajoutent de nombreux paramètres tels que la structure cristalline de la surface de la cellule, la résistance ohmique, et la concentration en dopant.

Caractérisation des intrants et sortants de la technologie


INTRANTS – Déchets à traiter	SORTANTS – Produits recyclés
Cellules défectueuses issues de la production	Wafer
Cellules de modules en fin de vie	Argent
	Solutions riches en revêtements antireflet et métalliseurs

Avantages		Inconvénients
Technologie permettant la va cellules de silicium, notamm consommation énergétique o nouveaux modules	ent en réduisant la	Utilisation de produits chimiques toxiques

Avantages	Inconvénients
Possibilité de récupérer des métaux stratégiques (notamment l'argent et l'aluminium) par électrolyse à partir de la solution décapante	Besoin d'adapter les solutions décapantes spécifiquement aux différentes cellules pour obtenir des résultats de suffisamment bonne qualité
	Mise en œuvre complexe liée à la manipulation des cellules (fragiles) et de produits toxiques

INTERPHASES RESEARCH – SEPARATION DES SEMI-CONDUCTEURS PAR ELECTROCHIMIE

Shalini Menezes a élaboré, en 2001, une technologie de recyclage des modules permettant la séparation des semi-conducteurs (CdS et CdTe) et la production de nouvelles cellules par un traitement électrochimique en boucle fermée. Les semi-conducteurs sont séparés des déchets, régénérés puis réutilisés sur une nouvelle cellule dans un unique système compact. Cette technologie n'induit aucune perte de semi-conducteurs, la solution électrolyte étant analysée, purifiée et réutilisée en boucle fermée. Ce système de recyclage est conçu pour être intégré sur une chaîne de production de modules pour un recyclage systématique des débris issus de la production et des modules en fin de vie.

Source : [48] Figure 47 - Schéma bloc de la technologie électrochimique de recyclage du CdTe de modules en fin de vie - InterPhases Research

L'avantage de l'utilisation de l'électrochimie pour le recyclage des métaux stratégiques est principalement le coût moins élevé et l'empreinte environnementale plus faible que les procédés d'hydrométallurgie, les produits chimiques étant utilisés en boucle fermée, et la technologie ne comprenant pas de poste de consommation énergétique majeure. De plus, cette technologie ne nécessite aucune opération manuelle. Par manque de financement, InterPhases n'a pas continué ses activités de recherche dans le domaine du recyclage des modules photovoltaïques en couches minces.

Caractérisation des intrants et sortants de la technologie

INTRANTS – Déchets à traiter	SORTANTS - Produits recyclés
Modules en fin de vie délaminés (séparés de leur encapsulant)	Verre purifié
Débris issus de la production	Nouvelles cellules de substrats de verre comportant les différents métaux stratégiques

Avantages	Inconvénients
Réutilisation des semi-conducteurs directement sur un nouveau substrat pour la production d'une nouvelle cellule	Nécessite le délaminage du module en amont
Facilement convertible à une échelle industrielle	Recherche interrompue par manque de financements
Utilisation minimale de solvant car boucle fermée	
Récupération optimale des semi-conducteurs	

Avantages				Inconvénients	
Coûts opéra	atoires faibles				
Empreinte	environnementale	limitée	car	peu	
d'effluents					

JENOPTIK GMBH – RECYCLAGE DES MODULES EN COUCHES MINCES PAR LASER OPTIQUE [49]

Jenoptik est une entreprise d'ingénierie allemande qui comporte cinq domaines d'activités:

- Conception de lasers et traitement des matériaux,
- Conception de systèmes optiques.
- Métrologie industrielle,
- Conception de solutions de circulation,
- Conception de systèmes de défense.

Les principaux clients concernés par ses services sont l'industrie des semi-conducteurs, les industries de manufacture, des technologies médicales, de la sécurité, de la défense et de l'aviation.

Jenoptik a développé cette technologie en interne et a effectué des tests en laboratoire. Cependant les recherches n'ont pas été poursuivies par manque de gisement de déchets.

Nom du brevet : Method for Recycling Thin-Film Solar Cell Modules

Numéro de brevet : DE102008047675 - US2009308535

Numéro d'enregistrement : 12/480,482 Date de publication : 08/06/2009

Inventeurs: Wagner, Uwe (Weimar, 99423, DE) - Schmieder, Frank (Bürgel, 07616, DE)

Attribué à : JENOPTIK Automatisierungstechnik GmbH (Jena, 07745, DE)

La méthode inventée par U. Wagner et F. Schmieder met en œuvre le recyclage de modules photovoltaïques en couches minces à l'aide d'un rayon laser. Cette méthode est basée sur le fait que la couche inférieure d'une cellule est transparente aux rayons laser de travail alors que l'électrode qui la recouvre est en mesure d'absorber ce rayon laser. L'électrode est partiellement vaporisée sous l'effet des rayons laser de travail absorbés, et décollée du substrat de la cellule (comportant les semiconducteurs). Ainsi le substrat contenant l'ensemble des semi-conducteurs (CdTe, CIS...) est séparé des autres couches fonctionnelles telles que l'encapsulant, les métalliseurs et les couches de protection. Le substrat peut alors être retraité spécifiquement aisément.

Description de la technologie

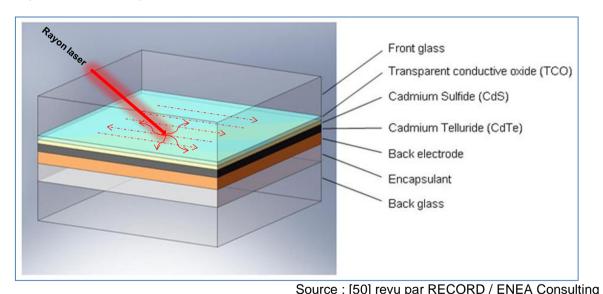


Figure 48 - Schéma représentatif de la technologie de séparation de l'encapsulant par rayon laser de Jenoptik

L'opération est effectuée dans un espace confiné pour éviter les pertes des métalliseurs vaporisés et l'éventuelle pollution de l'air avec des semi-conducteurs vaporisés.

L'opération du laser est effectuée en suivant les lignes longitudinales de la surface rectangulaire du module. Les lignes du laser sont supposées être sensiblement éloignées les unes des autres pour éviter des zones de surchauffe entraînant la fonte des matériaux plastiques. En effet, bien que le

risque d'endommager ou dénaturer les semi-conducteurs avec le laser soit nul dans le cas des couches minces, il est malgré tout nécessaire de maîtriser la charge thermique transmise au module traité pour éviter que les parties plastiques ne fondent.

Au cours de la première phase de l'opération, les bords du module sont évités. En fin de première phase, l'ensemble de la zone centrale du module est séparée en deux couches. Après quoi, lors d'une deuxième phase, la séparation des bords est effectuée par un procédé thermique localisé. Les bords du modules sont chauffés jusqu'au ramollissement de l'encapsulant permettant d'achever la séparation des deux couches laminées :

- substrat et semi-conducteurs d'un côté,
- encapsulant, métalliseurs et couches de protection de l'autre.

Une troisième phase consiste à chauffer des couches de protection par la surface supérieure (intacte) permettant la séparation de l'encapsulant alors ramolli et ainsi une synergie entre le recyclage des couches de protection et des couches de substrats (principalement composées de verre).

Pour permettre l'évacuation des gaz chargés en métalliseurs, une ouverture peut être effectuée en apportant une charge thermique importante localisée sur un bord du module avant le début des opérations sur le module.

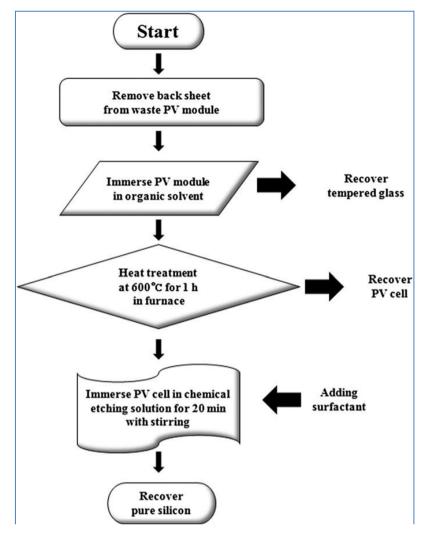
Intrants et sortants de la technologie

INTRANTS – Déchets à traiter	SORTANTS - Produits recyclés
Modules en fin de vie	Verre des couches de protection supérieure et inférieure
	Substrat associé au semi-conducteur
	Métalliseur vaporisé
	Encapsulant

Avantages	Inconvénients
Investissement initial faible : le rayon laser nécessaire à la technologie de recyclage est aussi nécessaire pour la plupart des lignes de production de modules en couches minces. Le même laser peut alors être utilisé pour ces deux fonctions.	Industrialisation difficile
Rentabilité économique du procédé fort probable [51]	Requiert un système de filtration des gaz
	Technologie non adaptée pour les modules brisés
	L'efficacité du laser pourrait être altérée sur des modules plus vieux (jaunissement de l'EVA etc). La sensibilité de la technologie au type de module photovoltaïque est encore inconnue.

KRICT – RECYCLAGE DES MODULES CRISTALLINS AVEC UN SOLVANT ORGANIQUE

Technologie du KRICT [10	KRICT Nova Research irrative of Chemical Technology				
Nom de la technologie	Nom de la technologie Technologie de recyclage du organique et de la cellule par décal				
Nom des partenaires menant la recherche	 Energy Materials Researc Institute of Chemical Technology Department of Chemis University Korea Institute of Energy Planning 	ology (KRICT) try, Chungnam National			
Technologies de modules traitées	c-Si	c-Si			
Zone d'implantation	Corée du Sud				
Niveau de maturité	R&D				
Performances de la technologie	Taux de recyclage	Etat et pureté			
Taux de recyclage global (calculé)	Environ 88%				
Taux de recyclage spécifique du verre	100%	Verre trempé			
Taux de recyclage spécifique du silicium cellules ou wafers	0%	Non disponible			
Taux de recyclage spécifique du silicium	86%	99,999%			


Caractérisation des intrants et sortants de la technologie et bilan massique

INTRANTS – Déchets à traiter	SORTANTS – Produits recyclés
Module en fin de vie	Verre trempé
Toluène	Toluène
Gaz d'argon	Solution décapante impure
Détergent	Silicium
Solution acide décapante	EVA carbonisé

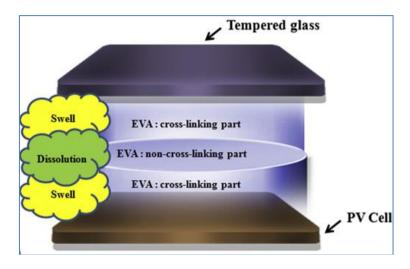
Le débit optimum de détergent est de 20% massique de la solution décapante, selon les tests réalisés par le KRICT.

Schéma-bloc et description de la technologie

La technologie consiste en le délaminage d'un module en fin de vie par des étapes successives de dissolution de l'EVA par un solvant organique pour récupérer un verre pur, puis en la séparation de l'EVA du reste de la cellule par un procédé thermique, suivi d'un procédé chimique de décapage du semi-conducteur en silicium par une solution acide couplée avec un détergent.

Source : [10] Figure 49 - Schéma de la technologie de recyclage du verre et du silicium solaire du KRICT

Séparation du verre par un solvant organique :


Les objectifs de recherche du KRICT sont notamment de réduire la durée de la phase de dissolution chimique de l'encapsulant. Plusieurs solvants organiques ont été testés pour des durées variées. Les résultats expérimentaux sont présentés dans le **Tableau 27**:

Solvents	1 min	30 min	120 min	210 min	24 h	48 h
2-Propanol	х	X	X	X	х	Х
4-Methyl-2-pentanone	Δ	Δ	Δ	Δ	Δ	Δ
Petroleum benzene	Δ	Δ	Δ	Δ	Δ	Δ
Tetrahydrofuran	\triangle , \bigcirc	0	۰	۰	0	0
Trichlorethylene	0	0	0	0	0	0
Toluene	0	0	۵	۵	0	0
o-Dichlorobenzene	Δ	0	۵	۵	0	0
Glycerin	X	X	X	X	X	X
Acetone	X	X	X	X	X	X
Ethyl alcohol	X	X	X	X	X	X

Source : [10]

Tableau 27 - Etat de l'EVA (performance de la séparation) selon les solvants organiques et les temps de séjour pour la technologie KRICT

Ainsi, la dissolution de l'EVA pour la récupération du verre peut-elle être effectuée par le toluène à une température de 90°C environ. Le verre peut alors être facilement séparé du reste du module et est pur de toute trace d'EVA.

Source : [10]

Figure 50 - KRICT - Schéma explicatif des effets des solvants organiques sur l'EVA

Séparation de l'EVA de la cellule par traitement thermique :

Pour séparer l'EVA de la cellule, un traitement thermique de chauffage à 600°C pendant 1 heure dans un gaz composé d'argon (Ar) pour éviter la décomposition / carbonisation du silicium est appliqué. Un débit de 200 ml/min est utilisé pour un module de 20 kg.

Purification du silicium :

Pour séparer les impuretés restantes sur le semi-conducteur telles que les revêtements anti-reflet, les métalliseurs et la jonction p-n, la cellule est plongée une heure dans une solution acide pour le décapage intégral de la cellule à température ambiante. La solution est composée de :

- Acide hydrofuorique (HF) (concentré à 48%)
- Acide Nitrique (HNO₃) (concentré à 70%)
- Acide Sulfurique (H₂SO₄) (concentré à 97%)
- Acide Acétique (CH₃COOH) (concentré à 99%)
- Eau distillée

L'étape de décapage se traduit par un ensemble d'oxydation et réduction simultanées.

Cependant l'addition d'un détergent (tensioactif appelé CMP-MO-2 fabriqué par Kanto Chemical Co Inc) permet de réduire le temps optimum d'immersion dans la solution à 20 minutes pour un décapage équivalent. Le détergent est ajouté dans les proportions suivantes : 20% du poids de la solution détergente.

Avantages	Inconvénients		
Durée de séparation de l'EVA réduite comparée aux procédés usuels de dissolution à l'acide nitrique concentré	Printing : note de contempation energetique		
	Consommation de produits chimiques variés et de gaz inertes en grande quantité		

PILKINGTON – TRAITEMENT THERMIQUE POUR LE DELAMINAGE DE MODULES CRISTALLINS

Elaboré par Pilkington Solar International GmbH (PSI) dans le cadre d'un projet de recherche testant un panel varié de technologies de recyclage, le but initial de la présente technologie est d'intégrer le recyclage des modules photovoltaïques aux procédés de recyclage existants. Suite aux tests réalisés, il aurait été conclu à l'époque (1998) que ni un procédé mécanique, ni un procédé chimique ne peuvent permettre une séparation homogène du module permettant d'obtenir des produits de qualité suffisante pour assurer la viabilité économique du projet. Un traitement thermique a alors été développé, applicable à tout type de technologie cristalline.

Pilkington a été la première société à breveter la technologie thermique de délaminage.

TECHNOLOGIE PILKINGTON		PILKINGTON
Nom de la technologie	Pilkington	
Nom de l'entreprise d'exploitation	Pilkington Solar International GmbH (PSI), anciennement Flachglass Solartechnik GmbH	
Technologies de modules traitées	c-Si, a-Si	
Zone d'implantation	Allemagne	
Date de publication	1998	
Niveau de maturité	R&D arrêtée	
Performances de la technologie	Taux de recyclage	Etat et pureté
Taux de recyclage spécifique du verre	Non disponible	Non disponible
Taux de recyclage spécifique du silicium cellules	Faible	Performance réduite de 10,2% à 12,8% par rapport aux cellules initiales
Taux de recyclage spécifique du silicium en wafer	60% (environ)	Performance réduite de moins de 10% par rapport aux cellules initiales
Coût moyen de recyclage	Environ 0,13 \$/Wc pour une unité d'une capacité de 150 000 cellules par an	
Consommation énergétique	Pyrolyse : poste de consommation élevé	
Caractéristiques		
Sensibilité au type de module	Non adapté aux modules très endommagés, peu de sensibilité aux différentes compositions des modules	
Propriétés	Récupération directe des cellules	

Caractérisation des intrants et sortants de la technologie

INTRANTS – Déchets à traiter	SORTANTS – Produits recyclés
Modules intacts en fin de vie	Cellules, rendement réduit
Modules cassés peu endommagés	Wafers, rendement réduit
	Verre
	Aluminium

Schéma-bloc et description de la technologie [9]

La technologie Pilkington est historiquement le premier traitement thermique de délaminage de modules cristallins en fin de vie, et permet la récupération de wafers ou de cellules intégrales et en état.

Le délaminage du module repose sur un traitement thermique en trois étapes successives :

- Chauffage progressif du module, puis, une fois ramolli, retrait manuel de la protection arrière en TEDLAR
- Pyrolyse à une température comprise entre 450° et 500°C dans une atmosphère de gaz inertes (N₂). Les gaz inertes plutôt que l'oxygène permettent d'éviter l'oxydation du métalliseur en argent qui compromet la réutilisation des cellules. L'encapsulant (EVA) est vaporisé. La pyrolyse est contrôlée grâce à des technologies spécialisées de combustion. Cette étape dure 4 heures en moyenne.
- Les cellules sont alors récupérées et peuvent être réutilisées pour la production de nouveaux modules, avec un rendement minoré de 10% à 13% du rendement initial.

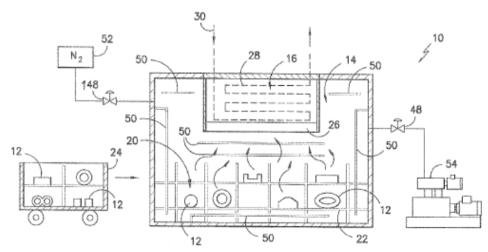
Les gaz issus du traitement thermique sont épurés.

Avantages et inconvénients de la technologie

Avantages	Inconvénients
Taux de recyclage des wafers relativement élevé au moment du développement	Le taux de recyclage des wafers devrait diminuer en raison de la tendance actuelle à une réduction de l'épaisseur des wafers pour réduire les coûts de production
Les wafers et/ou les cellules sont directement réutilisables	Le rendement des cellules récupérées est plus faible que le rendement initial (rendement réduit de 10 à 13%), il est nécessaire de trouver un débouché viable pour ces cellules.
	La durée importante du traitement limite l'industrialisation d'une telle technologie
	Effluents gazeux pollués nécessitent un retraitement spécifique
	La réutilisation des wafers nécessitent un traitement de surface en amont

PRIMESTAR SOLAR INC - SEPARATION DU CDTE DE SON SUBSTRAT

PrimeStar Solar, Inc. est un fabricant de modules en couches minces de type CdTe. L'entreprise a été fondée en 2006 et a acquis le statut de filiale de GE Energy en 2008. Le brevet relatant d'un système de récupération du tellurure de cadmium des débris issus de la production de modules photovoltaïques s'est avéré difficilement applicable au retraitement des modules en fin de vie. En effet, utiliser cette technologie pour le recyclage de modules en fin de vie nécessiterait un broyage amont du module. La succession du procédé mécanique de broyage et du procédé thermique très énergivore aboutirait à des coûts opératoires de recyclage trop élevés pour que cette technologie soit économiquement viable. Sa performance n'a pas été mesurée. Cependant, il a été vérifié que l'EVA séparé ne comporte aucune trace de cadmium.


Le brevet n'a pas encore été exploité jusqu'à aujourd'hui.

Titre : Système et procédé de récupération du tellurure de cadmium des composants du système de

fabrication de modules photovoltaïques **Numéro de brevet**: US 8,048,194 B2 **Numéro d'enregistrement**: 12/639, 085 **Date de publication**: 01/11/2011

Date de publication: 01/11/2011 **Inventeurs**: Christopher Rathweg

L'invention de Christopher Rathweg décrite dans le brevet US 8,048,194 B2 [53] et développée par Primestar Solar Inc consiste en une séparation continue des semi-conducteurs grâce à un four sous vide permettant de chauffer jusqu'à la température de sublimation du Tellurure de Cadmium (CdTe). Le CdTe est alors drainé et capté par une membrane de collecte amovible. Cette membrane est régénérée par agitation et déformation mécanique suite à un refroidissement pour séparer le CdTe.

Source : [53]

Figure 51 - Primestar Solar - Vue d'ensemble de l'invention du four sous vide pour la séparation du CdTe de son substrat

Avantages	Inconvénients
Technologie par voie sèche, ne générant aucun effluent liquide ou solide	Coûts opératoires trop élevés pour rentabiliser l'activité de recyclage dans le cas des modules en fin de vie
Récupération mécanique du CdTe par agitation	Consommation énergétique élevée
Purification intégrale de l'EVA et du verre (pas de trace de métaux)	Investissement initial relativement élevé car technologie très spécifique (membranes, four, système de régulation de la température)

SOLTECH/SEGHERS – RECYCLAGE DES MODULES CRISTALLINS DANS UN REACTEUR A LIT FLUIDISE

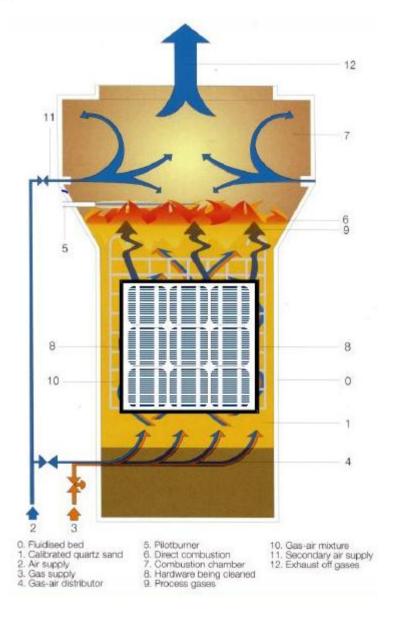
La technologie de Soltech/Seghers a été financée par la Commission Européenne dans le cadre du projet : « Brite Euram » sous le contrat : BRPR-CT98-0750. Ce projet n'aurait pas donné de suite et la technologie est a priori inutilisée.

TECHNOLOGIE SOLTECH & SEGHERS [9]		
Nom de la technologie	Pyrolyse dans un réacteur à lit fluidisé	
Nom des partenaires menant la recherche	Soltech, Seghers	
Technologies de modules traitées	c-Si (mono et multi-cristallin)	
Zone d'implantation	Belgique	
Date de publication	2000	
Niveau de maturité	R&D	
Performances de la technologie	Taux de recyclage	Etat et pureté
Taux de recyclage global	80%	
Taux de recyclage spécifique du verre	Quasi 100%	
Taux de recyclage spécifique du silicium cellules	0%	
Taux de recyclage spécifique du silicium en wafer	80%	So-Si: réutilisation directe possible pour des cellules au rendement équivalent
Coût moyen de recyclage	0,215 €/wafer recyclé Investissement initial pour mise en place de la technologie évalué à 575 k€.	
Coût moyen énergétique de recyclage	0,4 kWh/wafer recyclé	
Impact environnemental	Effluents solides et liquides: Unité de traitement d'eau (neutralise les effluents acides). Après la séparation solide/liquide, les boues sont séchées et envoyées au centre d'enfouissement le plus proche, les eaux usées sont rejetées.	
Caractéristiques		
Sensibilité au type de module	Assez élevée. Multi-cristallin plus complexe à décaper et nécessite une durée de décapage plus élevée	
Capacité installée	576 wafers/h	
Propriétés	Batch process Capacité limitée dans le réacteur à lit fluidisé	

Note : Peu d'acteurs ont opté pour le décapage des cellules. La technologie de Soltech est la plus détaillée en la matière. Pour tous, le décapage est plus complexe avec des modules multi-cristallins par opposition aux monocristallins.

Caractérisation des intrants et sortants de la technologie

INTRANTS – Déchets à traiter	SORTANTS - Produits recyclés
Modules cristallins en fin de vie	Wafers de qualité d'origine
	Verre de qualité des verres plats
	Aluminium


Schéma-bloc et description de la technologie [54]

La technologie consiste en un réacteur en lit fluidisé pour le démantèlement des composants variés de modules cristallins complets.

Séparation thermique en lit fluidisé

L'EVA est décomposé dans l'azote par pyrolyse à 450°C pendant 45 minutes. Le réacteur à lit fluidisé est rempli de sable fin. Un débit d'air chaud maintient le sable dans un état bouillant et fluidisé, ayant

les propriétés physiques d'un liquide. Les modules sont chargés dans un panier et immergés dans le lit fluidisé. La gazéification de l'EVA et de la surface inférieure en TEDLAR est entretenue par l'action mécanique de la silice. Les gaz sont drainés en tête de réacteur et passent immédiatement par une flamme permettant la postcombustion du gaz et apportant une source de chaleur pour alimenter le réacteur. Cette technologie permet de récupérer les wafers et le verre en parfait état. Les principaux paramètres d'optimisation du réacteur sont la vitesse de fluidisation des particules de sable et le diamètre des particules de sable. Pour les technologies cristallines la vitesse est de 1 cm/sec en moyenne et le diamètre du sable de 100 μ m. Le module est maintenu à une température de 450°C à 480°C dans le réacteur.

Source: [9]

Figure 52 - Réacteur à lit fluidisé élaboré par Frisson et al. pour la gazéification de l'EVA et de la surface inférieure en tedlar (Soltech/Seghers)

Retraitement des cellules

Les cellules imprimées récupérées sont endommagées par la température et nécessitent un traitement de repurification. Après mesure de la qualité du silicium récupéré par un scanner MFCA (« Modulated free carrier absorption »), les cellules reçoivent successivement les traitements suivants

- Décapage acide des métalliseurs :
 - Traitement Hydro-Fluorique avec un acide concentré à 15%

- Traitement à l'acide sulfurique (H_2SO_4 concentré à 80%) à 80°C Traitement à l'acide nitrique (HNO_3 concentré à 40%) à 80°C
- Décapage de la couche inférieure
 - Traitement à l'hydroxyde de sodium (NaOH) concentré à 20%
- Texturisation de la surface

Avantages	Inconvénients
Permet de réduire de 40% la consommation d'énergie pour la production de nouveaux modules	Le retraitement des effluents gazeux est très couteux car les particules de sable sont extrêmement fines (100µm)
Récupération de wafers et verre intacts	Besoin de quantité élevée de produit chimique
	Besoin de quantité élevée d'azote
	Pas de récupération des métaux (métalliseurs, cuivre, etc)

3.3 Les procédés de recyclage (ensemble complet de technologies constituant le procédé)

5N Plus – Procede de recyclage des modules CDTe et des metaux strategiques

Eléments clés du procédé

PROCEDE DE 5N PLUS [55] 5N PLUS		
Nom du procédé	Procédé de recyclage des modules PV	
Nom de l'entreprise d'exploitation	5N PLUS	
Collecteurs	Producteurs de modules exclusivement	
Technologies de modules traitées	CdTe principalement et CIGS dans une moindre mesure	
Zone d'implantation	USA, Canada, Allemagne, I	Malaisie
Niveau de maturité	Commercial	
Performances du procédé	Taux de recyclage	Etat de pureté
Taux de recyclage spécifique du Cd, Te et CIGS	> 95%	> 5N
Effluents et émissions	Cf. procédé de First Solar Les activités de recyclage sont effectuées selon les normes du pays.	
Caractéristiques		
Sensibilité au type d'intrants	Le CdTe et CIGS sont traités par deux procédés indépendants. Le processus de recyclage dépend des composants constitutifs du module mais également de sa technologie de fabrication. Les procédés de recyclage de 5N Plus sont optimisés par rapport aux modules de leurs principaux clients locaux. La ligne peut être ajustée à d'autres marques de modules au besoin.	
Propriétés	Retraitement total des métaux stratégiques jusqu'au niveau de pureté d'origine Couvre l'ensemble du spectre d'activité du recyclage du délaminage jusqu'au retraitement des semiconducteurs	

Caractérisation des intrants et sortants du procédé

INTRANTS – Déchets à traiter	SORTANTS – Produits recyclés
Déchets issus de la production	Métaux à leur pureté d'origine (>5N)
Modules en fin de vie	Verre
	Matières organiques (polymères)
	Plastique du boîtier de raccordement

Description du procédé

Le procédé de recyclage des modules CdTe et CIGS est constitué de quatre étapes :

- Délaminage
- Retrait des matières organiques
- Extraction du métal
- Séparation des métaux par traitement chimique (lixiviation)

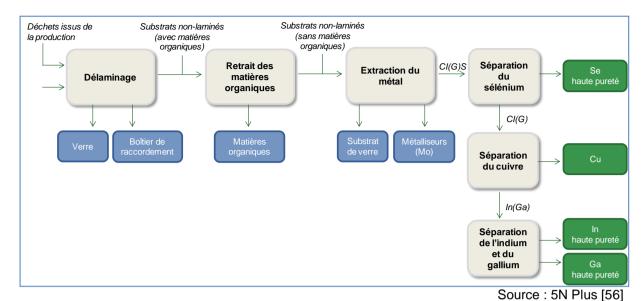


Figure 53 - Schéma bloc du procédé de recyclage des modules en fin de vie de types CIGS de 5N Plus

<u>Note</u>: Le procédé de recyclage des modules en fin de vie de type CdTe est très similaire à celui présenté ci-dessus (CIGS) car basé sur les mêmes principes.

Avantages	Inconvénients
Permet la purification à un niveau supérieur à 5N des métaux stratégiques	
Séparation sélective des différents métaux stratégiques	

CP SOLAR – **U**SINE DE RECYCLAGE DES MODULES PHOTOVOLTAÏQUES CRISTALLINS

CP Solar est un producteur de modules photovoltaïques dont le projet de mise en œuvre d'une unité de recyclage des modules en fin de vie s'est arrêté au stade de l'étude de faisabilité.

Eléments clés du procédé

PROJET DE PROCEDE DE CP SOLAR

	CP-Solar CP-Solar	
Nom du procédé	Usine de recyclage PV	
Technologies de modules traitées	c-Si	
Zone d'implantation	Chambéry, France	
Niveau de maturité	En développement	
Performances du procédé	Taux de recyclage Etat de pureté	
Taux de recyclage global	83%	
Taux de recyclage spécifique du verre	90% Non disponible	
Taux de recyclage spécifique du cadre	100% Non disponible	
Taux de recyclage spécifique de l'encapsulant	0% Non applicable	
Taux de recyclage spécifique des cellules silicium	90% Non disponible	
Taux de recyclage spécifique des métaux	90% Non disponible	
Taux de recyclage spécifique de la couche inférieure	0% Non applicable	
Rentabilité du recyclage	Activité rentable selon CP Solar (en incluant les frais de collecte et de recyclage)	
Consommation énergétique	Energie primaire:1266,8 kWh/kWc (de modules traités)* Energie électrique:443,4 kWh/kWc (de modules traités)*	
Effluents et émissions	Eaux usées : Pas de données Effluents gazeux : Issus du procédé thermique, traités directement à la sortie du four Effluents solides : Pas de données Effluents liquides : Pas de données	
Caractéristiques		
Capacité installée	230 kg/h	
Propriétés	Réutilisation des wafers Procédé semi-automatisé Valorisation énergétique des composés plastiques (EVA et Tedlar)	
Main-d'œuvre opératoire	6-7 personnes à temps plein	

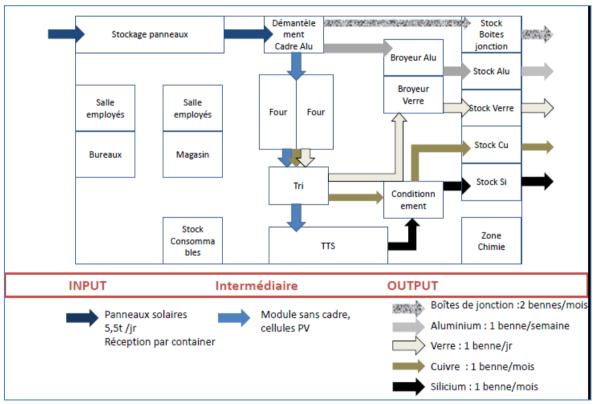
^{*} Valeurs estimées par Charline Froitier, méthodologie explicitée dans la thèse : [23]

Caractérisation des intrants et sortants du procédé

INTRANTS – Déchets à traiter	SORTANTS - Produits recyclés
Modules en fin de vie	Aluminium
	Cuivre
	Verre
	Silicium – wafer

Le procédé de recyclage de CP Solar consisterait en la succession d'une étape manuelle de démantèlement des cadres, d'un traitement thermique de délaminage et d'un traitement chimique de la surface des cellules :

1ère étape : Démantèlement - Séparation des cadres en aluminium


Les cadres sont séparés manuellement à l'aide d'une pince pneumatique à effort assisté. L'aluminium récupéré est broyé avant d'être envoyé chez un ferrailleur.

2^{ème} étape : Délaminage - Séparation du cuivre, du verre et des cellules

Les modules sont chauffés à 500°C pendant 30 minutes puis refroidis dans un four en ligne qui effectue ces deux opérations successives automatiquement et comporte une unité de traitement des vapeurs. A la sortie du four, l'ensemble des éléments sont triés manuellement. Le verre est redirigé vers une unité de stockage après avoir été broyé.

3ème étape : Recyclage des cellules - traitement de surface

Les cellules de silicium sont traitées par une unité de traitement de surface permettant le décapage et le polissage au niveau de pureté d'origine. Les cellules sont alors emballées et conditionnées.

Source: CP Solar - Charline Froitier [57]

Figure 54 - Plan prévisionnel des installations de recyclage de CP Solar

Analyse des consommations énergétiques et impact environnemental

Une analyse énergétique des procédés de recyclage des modules photovoltaïques peut théoriquement être réalisée pour tous les procédés. En pratique, les données nécessaires à cette analyse ne sont généralement pas disponibles. Le procédé de CP Solar fait exception, avec des données quantitatives connues, telles que décrites dans le Tableau 28. Elles ne sont toutefois valides que dans un cas très précis ([23]), et ne peuvent être extrapolées aisément.

	Energie primaire (kWh/kWc)	Energie électrique (kWe/kWc)
Consommation énergétique du procédé de recyclage (hors traitement aval de l'aluminium et du verre)	1266,8	443,4
Consommation énergétique évitée par réutilisation des matériaux	4258,6	1490,5
Bilan énergétique	2991,8	1047,1

Source : Thèse de Charline Froitier – Cas d'application sur CP Solar [23]

Tableau 28 - Bilan énergétique global du procédé de recyclage de CP Solar

L'énergie nécessaire au recyclage des matières premières d'un module est comparée à l'énergie que l'on consomme pour extraire et purifier les matières premières issues de ressources naturelles, dans le cas où elles ne seraient pas issues du recyclage. Ceci revient à évaluer la consommation d'énergie évitée en utilisant des matières premières recyclées. Ce bilan d'énergie est positif sur le procédé thermique de CP Solar, et montre que près de 3000 kWh sont économisés en produisant un module de 1 kWc à partir de matières premières recyclées.

Analyse des coûts

DEPENSES		RECETTES			
Investissement		Quantités recyclées			
Bâtiments Usine	0*	k€	Silicium	0,036	t recyclée/t traitée
Equipements	580	k€	Verre	0,63	t recyclée/t traitée
Autres	160	k€	Aluminium	0,15	t recyclée/t traitée
Investissement initial total	740	k€	Prix sur le marché **		
			Silicium	11,620	€/kg
Coûts opératoires		Verre	1,550	€/kg	
Transport (collecte+route)	134,1	€/t traitée	Aluminium	0,775	€/kg
Main d'œuvre	306,2	€/t traitée	Revenus		
Energie	15,5	€/t traitée	Silicium	418	€/t traitée
Recyclage cellule	162,8	€/t traitée	Verre	977	€/t traitée
Coûts supplémentaires	7,8	€/t traitée	Aluminium	116	€/t traitée
Coûts opératoires total	626,4	€/t traitée	Revenus	1511	€/t traitée
*Hypothèse: récupération de locaux réhabilités		** Soumis à des fluctuations importantes			

Source : CP Solar [57] modifié par RECORD / ENEA Consulting Tableau 29 - Analyse économique préliminaire de l'installation d'unités de recyclage de CP Solar

Ces données sur les coûts d'une installation résultent d'un ensemble d'hypothèses du projet de CP Solar à Chambéry. Bien que ces chiffres soient voués à évoluer, ils permettent de donner un ordre de grandeur des coûts opératoires, qui représentent environ 40% des revenus issus du recyclage du verre, de l'aluminium et du silicium.

FIRST SOLAR/SGS MINERALS – PROCEDE DE RECYCLAGE DES MODULES EN COUCHES MINCES 2008

La version 1.0 du procédé de recyclage de First Solar a initialement été élaborée et mise en place par SGS Minerals, dont le cœur de métier a trait à la production et au recyclage des métaux stratégiques, notamment par des procédés hydro-métallurgiques. Plusieurs installations reposant sur ce procédé ont été développées aux USA et en Allemagne.

SGS continue actuellement ses activités d'ingénierie dans le domaine du recyclage PV en développant une nouvelle version de ce procédé indépendamment de First Solar et pour un autre client avec des nouvelles technologies de mise en contact des phases (semi-conducteurs/liquide) et des coûts opératoires moindres.

First Solar, de son côté, a continué ses activités de R&D en partenariat avec d'autres acteurs, aboutissant à une nouvelle version 2.0 de leur procédé de recyclage, mis en œuvre dans la nouvelle unité de recyclage récemment construite en Malaisie, mais dont la description et les performances ne sont pas encore communiquées à ce jour.

Le procédé décrit ci-après correspond à la version 1.0 développée avec SGS Minerals dont les performances sont maintenant obsolètes (notamment sur les taux de recyclage et coûts opératoires).

Les objectifs de ce procédé consistent en la réintégration du cadmium et du tellure dans le cycle de production de nouveaux modules, tout en visant une pureté finale du verre suffisamment élevée pour pouvoir le valoriser dans l'industrie du verre flotté.

Eléments clés du procédé

PROCEDE DE RECYCLAGE DES COUCHES MINCES DE FIRST SOLAR

		rii st soldi .	
Nom du procédé	Procédé de recyclage des des modules en couches m	déchets issus de la filière inces de type CdTe	
Nom de l'entreprise d'exploitation	First Solar		
Collecteurs	First Solar		
Technologies de modules traitées	Couches minces de type CdTe		
Zone d'implantation	Frankfort (Oder, Allemagne), Perrysburgh (Ohio, USA)		
Niveau de maturité	Echelle commerciale		
Performances du procédé	Taux de recyclage	Etat de pureté	
Taux de recyclage global	~90%	-	
Taux de recyclage spécifique du verre	90%	Pureté élevée – verre flotté (pour l'industrie du verre plat ou des contenants)	
Taux de recyclage spécifique des semi- conducteurs (CdTe, CdS)	95%	99,7% (taux de purification pour commercialisation)	
Taux de recyclage spécifique de l'EVA	0% (valorisation énergétion débouché identifié)	que en l'absence d'autre	
Rentabilité de fonctionnement	Non – Volume critique de par an de déchets exclusivement)* [58]	rentabilité : 42 000 tonnes photovoltaïques (CdTe	
Consommation énergétique	broyage et la filtration sous-	s importants tels que le pression; nombreux autres nodérée tels que les tamis à is sans fin	

Effluents et émissions	Eaux usées: Consommation d'eau importante pour le rinçage des fractions solides dont: 95% est recyclée et réutilisée en boucle fermée dans le procédé (pour la lixiviation). 5% est traitée et rejetée. Effluents gazeux: Besoin de traiter les effluents gazeux dangereux Effluents solides: Non dangereux, entièrement purifiés d'éventuels éléments dangereux Effluents liquides: Utilisation de produits chimiques en réduisant au maximum les volumes rejetés et en respect des normes du pays
Caractéristiques	
Sensibilité au type de module	Elevée. Le procédé est spécifique à un seul type de module
Capacité installée	Supérieure à 10 tonnes par jour
Volumes traités moyens	Très inférieure à 10 tonnes par jour
Propriétés	Sites de recyclage en conformité avec les réglementations concernant la sécurité et les déchets des pays d'implantation Retraitement et purification des métaux stratégiques en interne

^{*} Chiffre datant de 2008, susceptible d'évoluer avec l'amélioration des technologies et les fluctuations des coûts des matières premières.

Caractérisation des intrants et sortants du procédé – Bilan matière

INTRANTS – Déchets à traiter	SORTANTS – Produits recyclés
Débris issus de la production	 Gâteau de filtre riche en métaux stratégiques (CdS et CdTe) Gâteau de filtre de l'unité de traitement des eaux Débris issus de la production de CdTe pur avec traces de métaux
Modules en fin de vie	EVA
	Calcins de verre (granules)

Schéma-bloc et description du procédé

Le procédé First Solar 1.0 (développé par SGS Minerals) consiste en la succession d'une étape mécanique de broyage, d'un procédé hydro-métallurgique de séparation par lixiviation des métaux stratégiques, puis du retraitement de la solution concentrée en métaux stratégiques par précipitation et du verre mélangé à l'EVA.

Les principaux défis technologiques relevés dans ce procédé sont:

- La séparation du substrat avec les semi-conducteurs de son encapsulant, où les problématiques de mise en contact des différentes phases sont déterminantes (optimisation de la lixiviation).
- La séparation du substrat (substrat de verre dans la plupart des cas) des semi-conducteurs,
- La purification des métaux stratégiques à un niveau de pureté suffisant pour le réutiliser dans la production de modules photovoltaïques,
- Le traitement dans un seul procédé des différents types de déchets issus des différentes étapes de la chaîne de production et distribution des modules photovoltaïques,
- L'optimisation de la lixiviation : équilibre entre la quantité d'acide utilisée et les proportions des métaux récupérés. Un excès d'acide lors de la lixiviation entraîne un déséquilibre de la lixiviation du Cd et du Te. En effet, la lixiviation est dans ce cas plus sélective envers le Cd, au détriment du Te qui tend alors à être entraîné dans la fraction des résidus (solides).

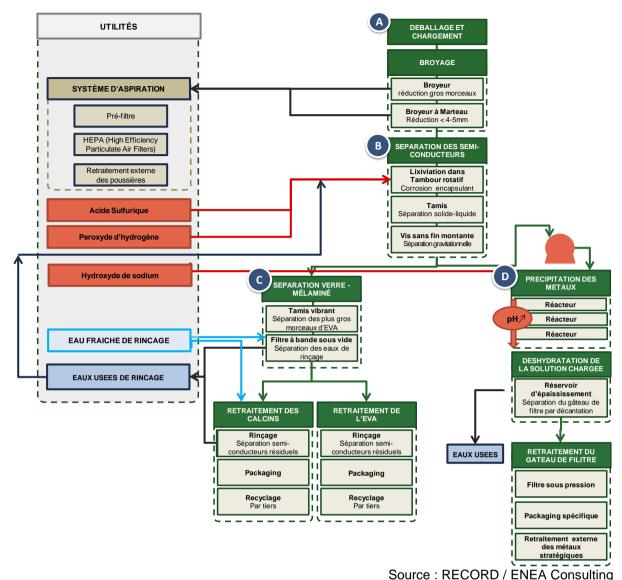


Figure 55 - Schéma bloc du procédé de recyclage des modules en couches minces CdTe de First Solar

Procédé mécanique de broyage des modules :

Les modules collectés sont tout d'abord déballés puis chargés dans l'entonnoir d'alimentation par un élévateur à fourche. Les modules sont ensuite broyés en deux étapes. La première consiste en un broyage en gros morceaux des modules pour faciliter leur transport. La deuxième consiste à réduire les modules en pièces de taille inférieure à 4-5 mm avec un broyeur à marteau pour assurer que l'ensemble des liaisons de mélaminé soient brisées.

B Séparation Verre-Semi-conducteurs par lixiviation :

Le broyat est transféré dans un filtre tambour rotatif pendant 4 à 6 heures, où les semi-conducteurs sont progressivement libérés de l'encapsulant par lixiviation dans de l'acide sulfurique faible (et du peroxyde d'hydrogène dans certains cas). Les ratios solide-liquide et acide/CdTe doivent être optimisés. Le dimensionnement du tambour rotatif est comparable à celui d'un mélangeur de ciment :

- Rotation équivalente à celle du mélangeur de ciment
- Température ambiante (21°C)
- Temps de passage : 6 heures
- Filtration sous vide et rinçage de la fraction solide

<u>Note</u>: dans la version 2.0 du procédé, implantée en Malaisie, le filtre tambour rotatif est remplacé par une colonne de lixiviation.

Procédé chimique de lixiviation, analyse thermodynamique :

$CdTe + 4H_2O_2(l) +$	H2SO4 = CdSO4	$+ H_2 TeO_4 + 4H_2O$			
T	deltaH	deltaS	deltaG	K	Log(K)
C	kcal	cal/K	kcal		
0	-267	-51	-253	2.124E+202	202
100	-273	-71	-247	4.058E+144	145
$CdTe + 3H_2O_2(l) +$	$H_2SO_4 = CdSO_4 +$	$-H_2TeO_3 + 3H_2O$			
T	deltaH	deltaS	deltaG	K	Log(K)
C	kcal	cal/K	kcal		
0.000	-220	-16	-216	8.671E+172	173
100.000	-222	-19	-215	6.708E+125	126
$H_2\text{TeO}_4 + 2H_2\text{O} +$	$3SO_2(g) = Te + 3H$	I ₂ SO ₄ (ia)			
T	deltaH	deltaS	deltaG	K	Log(K)
C	kcal	cal/K	kcal		
0	-129	-186	-78	3.53E+62	63
100	-145	-236	-57	2.60E+33	33

Source: SGS Minerals, A. Mezei [59]

Tableau 30 - Procédé First Solar/SGS Minerals Données thermodynamiques du procédé hydrométallurgique de lixiviation du CdTe

Composition de la solution de lixiviation

La composition de la solution de lixiviation est un élément déterminant pour l'optimisation du procédé. L'objectif est donc de réduire la part d'acide sulfurique pour les raisons suivantes :

- L'acide non consommé dans la réaction nécessiterait un traitement coûteux de neutralisation des effluents,
- La solution de lixiviation PLS (Pregnant Leaching Solution) est recyclable si sa concentration en acide n'est pas trop élevée,
- Ceci permet la réduction des coûts opératoires,
- Ceci permet la réduction du coût initial de l'installation (les équipements résistants à des pH extrêmes étant plus coûteux),
- Ceci permet d'obtenir une meilleure pureté finale du Cd et Te,
- Ceci permet de baisser la consommation de soude caustique dans l'étape avale.

Dans le procédé développé pour First Solar, la solution de lixiviation est composée ainsi [59] :

	Proportion	Concentration massique
Acide sulfurique	10%	93%
Peroxyde d'hydrogène	90%	35%

INTRANTS		
POUR 1000kg de modules entrants	Valeur	unité
Broyat de modules en fin de vie	1000	kg
Verre, encapsulant, métaliseurs et		
autres composants	999,997314	kg
Te	0,001447	kg
Cd	0,001239	kg
Solution de lixiviation	14,4	kg
Acide sulfurique (93%)	1,4	kg
Peroxyde d'hydrogène (35%)	13	kg

Source : Données de A.Mezei [59] revues par RECORD / ENEA Consulting

Tableau 31 - Procédé First Solar/SGS Minerals – Bilan matière de la lixiviation

Résultats de la lixiviation

- 99,5% du Te extrait (TeO3 et TeO4), avec un résidu de 4 à 7 ppm dans la fraction solide (verre + EVA) d'après les tests réalisés
- 99,6% du Cd extrait (CdSO4), avec un résidu de 5 ppm dans la fraction solide (verre + EVA) d'après les tests réalisés
- Consommation d'acide : 1,4 kg/tonne de modules traités
- Taux d'utilisation de l'acide : 22%
- Consommation de Peroxyde d'hydrogène : 13 kg/tonne de modules traités

Séparation solide-liquide des deux fractions

A la fin de la lixiviation, le sens de rotation du tambour est inversé pour vider son contenu dans un tamis. Une vis sans fin montante convoie le verre et le liquide drainé vers le bas.

Séparation Verre - Encapsulant :

L'encapsulant et le verre sont séparés mécaniquement sur un tamis à vibration. L'encapsulant est déposé en haut du filtre par vibration puis convoyé par une deuxième vis sans fin alors que le verre tombe par gravitation. Le verre est ensuite rincé à l'eau pour évacuer les éventuels résidus de semiconducteurs (CdTe ou CdS). Le verre est enfin séché et emballé pour ensuite être recyclé chez un tiers.

INTRANTS T	AMIS		SOR	TANTS TAMIS	
Intrants	Valeur		Sortants	Valeur	Valeur
				Fraction supérieure du tamis	Fraction inférieure du tamis
Masse totale verre + EVA	997,33	kg	Masse totale verre + EVA	249,33	kg 747,99 kg
Masse EVA	50,6	kg	Masse EVA	49,9 H	kg 0,75 kg
Proportion EVA	3%		Proportion EVA dans la fraction concernée	20%	0,10%
Masse verre	946,76	kg	Masse de verre	199,47 k	kg 747,25 kg

Sources: A.Mezei - Résultats du test de lixiviation

Tableau 32 - Procédé First Solar/SGS Minerals - Bilan matière de la séparation verre/EVA

Traitement de la PLS (solution de lixiviation), séparation des semi-conducteurs :

SGS Minerals Services a développé plusieurs types de procédés de retraitement de la PLS [60] :

- par un procédé hydrométallurgique de précipitation suivie d'une déshydratation
- par procédé hydrométallurgique d'extraction avec solvant suivi d'une extraction électrolytique
- par procédé hydrométallurgique d'extraction électrolytique

Procédé chimique par précipitation des métaux

Les centres de retraitement de First Solar utilisent pour la plupart le procédé de précipitation. Le cadmium et le tellure sont précipités dans trois réacteurs successifs avec un pH croissant avec une Etude RECORD nº 11-0912/1A

solution d'hydroxyde de sodium (NaOH) de concentration massique de 50% (1450 g/l). La réaction de précipitation exothermique provoque une augmentation de la température d'environ 3,2°C et permet la précipitation de 99,96% des semi-conducteurs. La solution est alors transférée dans un réservoir d'épaississement ou le gâteau de filtre est séparé par décantation. Le gâteau de filtre est alors déshydraté avec un filtre sous pression puis emballé et envoyé dans un centre de retraitement spécifique.

Efficacité de la précipitation	
Taux de récupération de Cd purifié	99,99%
Taux de récupération de Te purifié	93,92%

Sources: A.Mezei - Résultats du test de lixiviation

Tableau 33 - Procédé First Solar/SGS Minerals - Résultats de la précipitation

Avantages et inconvénients

Avantages	Inconvénients
Procédé industriel semi-automatisé à capacité élevée	Utilisation de produits chimiques en quantités importantes
Réutilisation des eaux de rinçages dans l'étape de lixiviation	Investissement initial très élevé
Taux de récupération du CdTe stable et élevé	Coûts opératoires élevés
Procédé entièrement à température ambiante	Besoin de quantités élevées pour rentabiliser la mise en activité du procédé
Possibilités d'optimisation du procédé en réduisant la taille des morceaux lors du broyage	Besoin de retraiter des effluents liquides gazeux dangereux
Les fractions solides sont entièrement séparées du cadmium	

LOSER CHEMIE - PROCEDE DE RECYCLAGE DE MODULES EN COUCHES MINCES

Ce procédé développé par Loser Chemie est breveté :

Titre : Techniques et procédé pour recycler des modules photovoltaïques en couches minces

Numéro de brevet : DE102008058530A1 Date de publication : 27/05/2010

Inventeur: Palitzsch, Wolfram (Freiberg, Allemagne)

Eléments clés du procédé

PROCEDE DE LOSER CHEMIE [61]		
Nom du procédé	Procédé universel de recyclage de modules en couches minces	
Nom de l'entreprise d'exploitation	Loser Chemie	
Collecteurs	Clients directs + PV CYCLE	
Technologies de modules traitées	Couches minces : CdTe, CIS, CGS et CIGS	
Zone d'implantation	Allemagne, Saxe	
Niveau de maturité	En cours d'optimisation (consommation d'énergie)	
Performances du procédé	Taux de recyclage Etat de pureté	
Taux de recyclage global	Proche de 100%	
Taux de recyclage spécifique du verre	100%	
Taux de recyclage spécifique métaux stratégiques	Non mesuré mais proche de 100%	
Rentabilité du procédé	Selon Loser Chemie : Coûts opératoires très faibles par rapport aux concurrents, possibilité de rentabiliser les activités de recyclage à l'échelle du pilote [61]	
Consommation énergétique	Faible et optimisation en cours pour réduction supplémentaire	
Effluents et émissions	Eaux usées: les eaux de rinçage sont réutilisées en boucle fermée dans l'alimentation du procédé chimique pour diluer l'acide chlorhydrique. La solution contenant l'ensemble des métaux stratégiques et éléments dangereux est retraitée par un tiers (encore en discussion) Effluents gazeux dangereux: Probables en phase de broyage Effluents solides: Toutes les fractions solides sont valorisées Effluents liquides: Les produits chimiques sont régénérés et réutilisés	
Impact environnemental	Important de par l'utilisation de produits chimiques et la contamination des eaux de rinçage au cadmium	
Caractéristiques		
Sensibilité au type de module	Faible. Procédé applicable indifféremment à différents types de couches minces de toutes qualités	
Capacité installée	10 tonnes de cellules par an	
Propriétés	Batch ; Non automatisé Universel à tous types de couches minces	
Main-d'œuvre opératoire	1 personne pour le pilote	
	•	

INTRANTS – Déchets à traiter	SORTANTS - Produits recyclés
Modules en fin de vie	Métaux stratégiques séparés : Ag, Cd, Te, In, Mo, Ga, Cu, Se
Débris issus de la production	Matière organique (plastique, EVA)
	Verre complet non brisé de pureté élevée (destiné à Reiling pour recyclage dans l'industrie du verre plat)

Schéma-bloc et description du procédé

Le procédé développé par Loser Chemie est décrit dans le brevet DE102008058530A1 et a pour objectif de séparer le verre et les métaux stratégiques en réduisant la consommation d'énergie par rapport aux autres procédés établis précédemment, notamment aux Etats-Unis. Le procédé décrit dans le brevet correspond au procédé semi-automatisé à l'échelle industrielle. Cependant les retours d'expérience actuels proviennent des résultats d'un procédé pilote principalement manuel.

Option - 1ere étape :

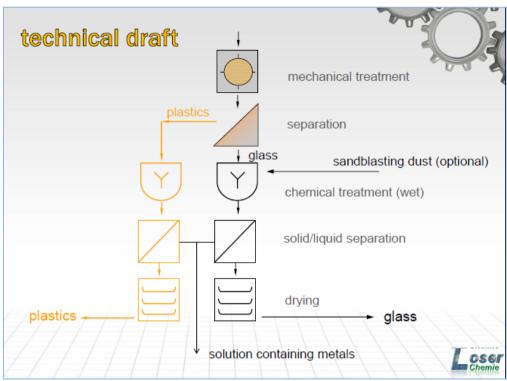
Une phase amont de séparation du verre des couches de protection par voie chimique permet de réduire les volumes de verre à retraiter pour la séparation des métaux stratégiques.

2^{nde} étape : Procédé mécanique de broyage

Les cellules sont ensuite broyées par un procédé mécanique à une taille suffisamment fine pour que les matériaux inorganiques et plastiques puissent être séparés.

3^{ème} étape : Procédé chimique

Les deux fractions sont soumises à un procédé chimique par voie humide, qui consiste en :


- L'extraction dans un réacteur discontinu agité des fractions solides avec de l'acide chlorhydrique concentré à 15% à température ambiante. Les matières solides sont pompées.
- La séparation dans le même réacteur discontinu agité des différents composants dans une solution de peroxyde d'hydrogène. La durée de cette étape dépend directement de la quantité introduite de solution de peroxyde d'hydrogène. Les métaux sont alors dissous dans la solution.

4ème étape: Séparation solide / liquide

Le mélange contenu dans le réacteur est filtré afin de séparer les particules solides de verre et de plastique des métaux stratégiques.

5^{ème} étape : Valorisation et retraitement des fractions

- Le verre et le plastique sont rincés à l'eau et séparés en deux phases de composition homogène. Le verre est recyclé par des entreprises spécialisées telles que Maltha.
- L'eau de rinçage est réutilisée pour diluer l'acide chlorhydrique utilisé à la 3^{ème} étape (boucle fermée).
- Le retraitement de la solution concentrée contenant les métaux stratégiques (à 37400 mg/kg, par exemple, où l'indium est sous forme de In(OH)₃) est encore sujet à débats.

Source : [62]

Figure 56 - Schéma représentant les différentes étapes de recyclage des modules en couches minces par Loser Chemie

Avantages et inconvénients

Avantages	Inconvénients
Universel : possibilité de traiter les couches minces CdTe et CIGS simultanément	Impact environnemental encore inconnu (étude prévue en partenariat avec l'Université de Bâle)
Coûts de recyclage revendiqués très concurrentiels (bas, mais coûts confidentiels)	Procédé non-automatisé (implique manipulation des modules CdTe démantelés)
Performance revendiquée très concurrentielle (proche de 100%)	

LOSER CHEMIE — PROCEDE DE RECYCLAGE DE MODULES CRISTALLINS

Ce procédé de Loser Chemie consiste en la séparation des différentes couches du module pour récupérer les métaux, notamment l'aluminium, en vue de le réutiliser comme matière première dans la production de Loser Chemie. Le procédé développé pour la séparation des métaux des modules cristallins est décrit dans le brevet DE102007034441A1.

Numéro de brevet : DE102007034441 Date de publication : 22/01/2009

Références à l'étranger : WO1993000295A1 Inventeur : Palitzsch, Wolfram (Freiberg, Allemagne)

Eléments clés du procédé

PROCEDE DE LOSER CHEMIE CRISTALLIN		
Nom du procédé Procédé pilote de recyclage de modules c-Si e		
Nom de l'entreprise d'exploitation	Loser Chemie	
Collecteurs	Non disponible	
Technologies de modules traitées	c-Si et a-Si	
Zone d'implantation	Allemagne, Zwickau	
Niveau de maturité	Fonctionnel en 2006 mais qui n'est aujourd'hui plus utilisé par manque de matière à recycler	

Procédé chimique de délaminage

Les cellules sont traitées par voie humide avec une solution acide de sels de métaux, notamment de chlorure d'aluminium :

- Les faces arrière et avant de la cellule sont dissoutes dans un premier temps avec du chlorure d'aluminium pour libérer de l'encapsulant les métalliseurs en aluminium (Composition de la solution de dissolution: Al = 5,89% et composé basique = 2,4%). La réaction s'effectue à température ambiante. La durée de la réaction dépend directement de la température et de la concentration de la solution de dissolution.
- La solution enrichie en aluminium est filtrée (Composition de la solution de dissolution : Al = 7,5% et Composé basique = 24,7%).
- Le reste de la cellule en silicium est traité à l'acide nitrique pour dissolution de l'argent.
- On obtient après filtration une solution de nitrate d'argent.

Caractérisation des intrants et sortants du procédé

INTRANTS – Déchets à traiter	SORTANTS - Produits recyclés
Modules cristallins en fin de vie	Solution de chlorure d'aluminium concentrée en aluminium (permettant d'obtenir du nitrate d'argent)
Cellules cristallines en fin de vie	Cellules en silicium
	Argent
	Verre purifié

Avantages et inconvénients du procédé

Avantages	Inconvénients
Boues (gâteau de filtre) de sortie riches en métaux stratégiques plus propices à la séparation avale des métaux (la solution présente une viscosité élevée, adaptée à l'optimisation des procédés hydro-métallurgiques de purification des métaux contenues dans les boues)	Les valorisations possibles des semi-conducteurs ne sont pas détaillées.
Coûts du recyclage limités	Consommation importante de produits chimiques
Le silicium peut être valorisé	
Valorisation possible directe du chlorure d'aluminium	

MALTHA – PROCEDE DE RECYCLAGE DE VERRE LAMINE ADAPTE AUX MODULES CRISTALLINS

Eléments clés du procédé

PROCEDE DE MALTHA [63]		Malula	
	D (1)	Maltha 🕰	
Nom du procédé	Procédé de recyclage semi-automatisé du verre adapté aux modules PVs		
Nom de l'entreprise d'exploitation	Maltha		
Collecteurs	PV CYCLE		
Technologies de modules traitées	c-Si (mono et multi-cristallin), a-Si, HIT	
Zone d'implantation	Lommel, Belgique		
Niveau de maturité	Développement de 2006 à 2010, activités commerciales depuis 2010. Procédé encore en cours de réglage (consommations d'énergie non optimum)		
Performances du procédé	Taux de recyclage	Etat de pureté	
Taux de recyclage global	95 %		
Taux de recyclage spécifique du verre	NA	Variable selon les modules recyclés	
Taux de recyclage spécifique de cellules de silicium	0% (stockées)	NA	
Taux de recyclage spécifique du cadre et cuivre	100%	Purs	
Taux de recyclage spécifique du boîtier de raccordement	100%	NA	
Coût moyen de recyclage	Elevé dû aux petites quantités et à la consommation d'électricité élevée		
Coût moyen énergétique de recyclage	Broyage est un poste de consommation énergétique majeur (mais pas encore mesuré)		
Effluents et impact environnemental	Effluents solides: fractions homogènes de silicium, plastiques et autres matériaux variés Effluents liquides: pas d'effluents liquides car purification du verre par procédé mécanique, pas d'utilisation de produits chimiques Effluents gazeux: les poussières issues du procédé de broyage nécessitent une filtration		
Caractéristiques			
Sensibilité au type de module	Qualité du verre sortant très variable selon la qualité et le fabricant des modules entrants		
Capacité installée	5 à 10 tonnes/heure, 15 tonnes/heure si automatisation de la séparation des cadres en aluminium		
Volumes traités moyens	50 à 100 tonnes par jour		
Propriétés	Semi-automatisé, continu et recyclage partiel		
Main-d'œuvre opératoire	5 à 7 personnes		

Caractérisation des intrants et sortants du procédé

INTRANTS - Déchets à traiter	SORTANTS - Produits recyclés
Modules en fin de vie	Calcins de verre plat de toutes qualités et dimensions
Déchets issus de la production	Aluminium
	Plastique impur
	Cellules impures stockées en vrac

Le procédé est à l'origine un procédé de recyclage du verre laminé, qui a été modifié pour le traitement des modules PV. Les changements apportés sont confidentiels.

Dans un premier temps les cadres sont séparés manuellement et vendus aux ferrailleurs.

<u>Note</u>: une machine de séparation automatique des cadres en aluminium est en cours de développement.

Les cellules et la boîte de raccordement sont aussi séparées manuellement du verre.

Les boîtes de raccordement sont séparées et vendues à un recycleur de plastique pour une somme quasi-nulle. Le verre est traité par une série de **procédés mécaniques** détaillés ci-dessous puis vendu. Les dopants et le traitement antireflet du verre issus de modules photovoltaïques ne pose pas de problèmes à la réutilisation. Les cellules en silicium sont stockées chez Maltha. Environ 400 kg de cellules se sont accumulées en 6 ans d'activité. Une solution de recyclage des cellules est recherchée.

Figure 57 - Schéma du procédé de recyclage du verre par Maltha

Description des étapes de recyclage successives du verre par Maltha :

- séparation manuelle des grosses impuretés
- séparation de pièces métalliques à l'aide de puissants aimants
- broyage du verre par des concasseurs en calcins de taille précise
- séparation d'adhésifs éventuels
- séparation d'éléments non ferreux par une machine à courant de Foucault
- tri des divers fragments à l'aide de tamis
- dépistage d'éléments CPP (Céramique, Pierre, Porcelaine) au laser qui sont ensuite éliminés à l'aide d'un pistolet à air
- tri final
- contrôle de la qualité
- le produit fini est stocké dans un séchoir

Avantages et inconvénients

Avantages	Inconvénients
Capacité flexible (possibilité de montée en capacité)	Consommation d'énergie élevée, mais possibilité d'optimiser la consommation
Investissement initial limité permettant d'assurer la pérennité de l'installation	Rentabilité du recyclage conditionnée par la rémunération de PV CYCLE

Avantages	Inconvénients
Impact environnemental faible (pas d'utilisation de produits chimiques)	Pas de recyclage des cellules (pertes de matières premières)
Favorise la création d'emplois	Stockage des cellules non recyclées (contrainte de place)
Modèle transposable à tous les recycleurs de verre	Pas de valorisation des métaux stratégiques

POSEIDON - PROCEDE DE RECYCLAGE DES MODULES CRISTALLINS

Eléments clés du procédé

PROCEDE DE POSEIDON		Poseidort Solar
Nom du procédé	Procédé de recyclage du Silicium	
Nom de l'entreprise d'exploitation	Poseidon	
Collecteurs	Réseau d'industriels de Poséidon	
Type de déchets traités	Cellules mono et multi-cristallines	
Zone d'implantation	Inde du Sud, Chennai	
Niveau de maturité	Activité commerciale à grande échelle de	
Performances du procédé	, , , , , , , , , , , , , , , , , , , ,	e pureté
Taux de recyclage global	De 75% à 95% selon la >7N qualité des intrants	
Rentabilité du recyclage	Coûts du recyclage confidentiels, indexés à la qualité du silicium à recycler et financés par les clients (générateurs de déchets)	
Consommation énergétique	0,5 kWh/kg (estimation de Poseidon Solar) – pas d'unité énergivore, consommation faible (comparée aux autres procédés, selon Poseidon Solar)	
Effluents et impact environnemental	Effluents liquides: volumes relativement importants, traités puis séchés. Les résidus sont enfouis. Effluents gazeux: traitement intégré des gaz contaminés. Les résidus sont enfouis. Effluents solides: enfouis. La qualité de tous les effluents est en respect avec les limites de pollution imposées par le CPCB (Central Pollution Control Board).	
Caractéristiques		
Sensibilité au type d'intrants	Adaptable à tout type de silicium (qualité et forme)	
Capacité installée	3000 tonnes/jour	
Volumes traités moyens	50 000 tonnes/mois	
Propriétés	 Semi-automatisé, continu Procédé spécifique selon le type de déchet, retraitement différencié à l'issue du tri : A. «Crucible ready silicon processing» pour les cellules brisées. B. « In-process » pour les cellules non brisées : les wafers sont purifiés pour être directement réutilisés pour la production de cellules 	
Main-d'œuvre opératoire	85 personnes (dont 65 opérateurs et 20 i	ngénieurs)

Description des procédés différenciés selon la qualité des wafers (brisés ou non)

A. "CRUCIBLE READY SILICON PROCESSING": Procédé principal

Tri des déchets par type de revêtement

Broyage des déchets : grenaillage des blocs sur tapis automatisé pour réduire en poudre les blocs de silicium avec collecteur de poussières

Procédé chimique : automatisé (système Siemens PCS 7) avec un épurateur pour les gaz effluents. **Lavage** : utilisation d'eau déminéralisée pour éviter la contamination des cellules par des minéraux **Séchage Emballage**

Traitement des effluents :

- Rectification du pH (désacidification)
- Evaporation
- Collecte et enfouissement des déchets solides restants

INTRANTS – Déchets à traiter	SORTANTS - Produits recyclés
Débris issus de la production de modules en couches minces (sciage, lingots, etc)	« Crucible Silicon », >7N
Wafer ronds issus de l'industrie des semi- conducteurs brisés ou présentant un défaut de qualité	

B. "IN-PROCESS": Procédé secondaire de retraitement des cellules et wafers non-brisés

Le procédé de retraitement des wafers de Poseidon consiste en une série de tests de performance des cellules et de traitement mécaniques et chimiques pour la séparation du revêtement et la texturisation de la surface de la cellule. Aucun détail n'est fourni sur le procédé. Le procédé est équivalent à un traitement de surface (TTS) usuel.

INTRANTS – Déchets à traiter	SORTANTS - Produits recyclés
Cellules et wafers à bas rendement	Wafers purifiés prêts à être réutilisés

Avantages et inconvénients des procédés de Poseidon Solar

Les technologies de Poseidon Solar ont été étudiées car il y une possibilité à long terme d'intégration de la phase de délaminage par Poseidon Solar et de récupération des cellules des modules en fin de vie. Aujourd'hui les coûts de transports seraient trop élevés pour mettre en place un tel système. Cependant, l'utilisation des technologies actuelles de Poseidon combinées avec des technologies de délaminage européenne pourraient aboutir à un recyclage de qualité et économiquement réalisable, sous condition de capter des flux de déchets suffisamment importants.

Avantages	Inconvénients
Valorisation optimale du silicium	Marché volumineux
Produits du recyclage homogènes et de qualité élevée	Intégration de l'étape de démantèlement au domaine d'activité de Poseidon Solar encore impossible pour le moment (technologie inadaptée et coûts de transports trop élevés)
« Crucible silicon » réutilisable par les producteurs de cellules multi-cristallines uniquement	Coût de la main d'œuvre (fonction de l'implantation géographique)
Favorise la création d'emplois	
Pas d'utilisation de produits chimiques chlorés pour le retraitement des cellules	

PV RECYCLING - PROCEDE DE RECYCLAGE [64]

PV Recycling, basé aux USA a développé un procédé en partenariat avec Encros, basé en Suisse pour mettre en place un procédé pilote de démantèlement des modules photovoltaïques. L'objectif d'Encros dans ce procédé est de séparer les différents composants sans les dénaturer ou changer leur structure. Encros travaille en partenariat avec Saperatec (Stephan Kernbaum).

Le procédé consiste en une succession de d'étapes mécanique et chimique. Les détails de ce procédé restent entièrement confidentiels.

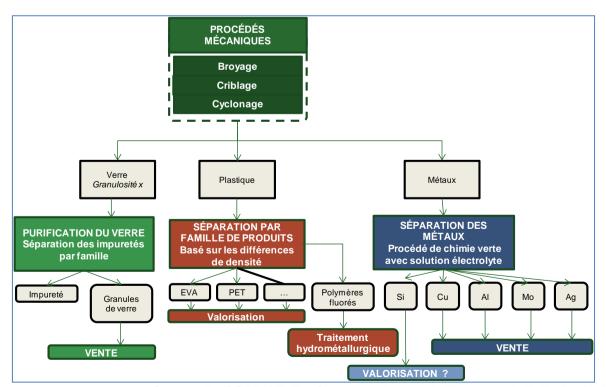
INTRANTS – Déchets à traiter	SORTANTS - Produits recyclés
Modules en fin de vie	Verre vendu à des utilisateurs de verre variés
Déchets issus de la production	Aluminium issu du cadre
	Cuivre
	EVA (recherche de valorisation potentielle en cours)
	Silicium, revalorisé dans des applications variées autres que solaires
	Métaux stratégiques, revendus à des centres de retraitement spécialisés

RECUPYL / PROJET VOLTAREC — PROCEDE MECANIQUE ET DE CHIMIE VERTE DE RECYCLAGE DE MODULES CRISTALLINS

Le projet Voltarec, porté par la société Recupyl, a pour objectif le retraitement global des modules photovoltaïques avec un impact environnemental limité. Recupyl bénéficie d'une grande expérience dans le recyclage des déchets laminés (batteries et écrans LCD) et en hydrométallurgie (mise en œuvre dans le recyclage des écrans LCD, les techniques de recyclage de l'indium étant identiques dans les deux cas d'application.

PROCEDE MECANIQUE RECUPYL			RECUPYL
Nom du procédé	Procédé universel de recyclage des modules PV en fin de vie par des procédés mécaniques, hydro-métallurgiques e		
	de chimie verte	ques, nyaro-m	etailurgiques et
Technologies de modules traitées	c-Si (mono et multi-cristallin) (possibilité à long terme d'adapter le procédé à tous types de couches minces)		dé à tous types
Zone d'implantation	Développé en France Implantation prévisionnelle en	Espagne et er	n Allemagne
Niveau de maturité	R&D jusqu'en Août 2012 Développement du démonstrateur à partir de septembre 2012		de septembre
Performances du procédé	Taux de recyclage	Etat e	et pureté
Taux de recyclage global	85% à 90%		
Taux de recyclage spécifique du verre	Non disponible	Niveau de pu l'industrie du	
Taux de recyclage spécifique du silicium en wafer	0%		
Taux de recyclage spécifique du silicium broyé	0% - provisoire *	Non applicab	le
Taux de recyclage spécifique des métaux	Non disponible	Purifié, prêt p le marché	our remise sur
Rentabilité économique du recyclage	Non rentable sans contrepartie financière pour les services de recyclage [65]		our les services
Consommation énergétique	A évaluer ; cependant limitée se déroule à température amb	oiante	
Effluents	Eaux usées: aucune, le procédé étant par voie sèche principalement et aucune d'eau n'est utilisée en tant qu'utilité Effluents gazeux: faibles et non toxiques Effluents solides: impuretés séparées du verre et composés fluorés séparés de la fraction des hydrocarbonés à retraiter Effluents liquides: produits chimiques non polluants (chimie verte) et utilisés en boucle fermée (solution électrolyte)		
Caractéristiques			
Sensibilité au type de module	La variabilité des taux de recyclage des modules selon les types de modules recyclés est forte. Cependant ce procédé serait adaptable à tous types de technologies et de déchets (couches minces, cristallins, débris issus de la production,		dant ce procédé s et de déchets

	etc) pour de faibles investissements supplémentaires.
Propriétés	Procédé à faible impact environnemental :
	Température ambiante
	Pas d'émissions de gaz (GES ou toxiques)
	Chimie verte pour séparation des métaux
	 Séparation internalisée des composés fluorés
	Démantèlement du module par une succession de procédés mécaniques :
	Purification du verre à sec
	 Séparation, retraitement et valorisation des polymères
	 Récupération des composés fluorés (toxiques et à haute valeur ajoutée)


^{*} Le silicium est séparé mais les solutions de revalorisation sont encore en cours de recherche

Caractérisation des intrants et sortants du procédé

INTRANTS – Déchets à traiter	SORTANTS - Produits recyclés
Modules en fin de vie	Verre purifié
(Débris issus de la production éventuellement, adaptation potentielle du procédé à ce type de déchets)	Polymères fluorés purifiés
	EVA purifié
	Silicium en poudre
	Fractions d'autres polymères
	Métaux purifiés (Al, Mo, Cu, Ag)
	Impuretés (poussières)

Description du procédé

Les trois principales étapes du procédé développé dans le projet Voltarec consistent en la séparation mécanique du module broyé en trois fractions homogènes (verre, silicium et polymères), suivie de la séparation chimique sélective de certains composants dans certaines de ces fractions, puis enfin de la récupération et du retraitement des métaux par hydrométallurgie.

Source : RECORD / ENEA Consulting à partir de l'interview de F. Tedjar [65] Figure 58 - Schéma bloc du procédé de recyclage de Recupyl

1^{ère} étape : Séparation en trois fractions homogènes du module broyé

Le procédé consiste en une série de procédés mécaniques de broyage, criblage et cyclonage du module entrant pour séparer en trois phases sèches distinctes par leur granulométrie spécifique :

- le verre
- les polymères (Tedlar, PET, EVA, et autres polymères fluorés)
- les métaux (argent, cuivre, aluminium, molybdène)

Chacune de ces phases est retraitée / purifiée / valorisée indépendamment.

2^{ème} étape : Purification des trois fractions Purification du verre par attrition

Le verre est purifié dans un procédé mécanique à sec en séparant les impuretés spécifiquement par famille. La purification de la surface du verre par abrasion permet de séparer tout composant éventuellement pulvérisé tel que le CdTe pour les technologies en couches minces.

Le verre recyclé présente un niveau de pureté suffisant pour être alors revendu auprès des industries du verre plat.

Retraitement du mélange de polymères

Les différents types de polymères sont séparés (séparations basées sur les différences de propriétés physiques de densité, solubilité, etc...) :

- L'EVA est séparé, purifié puis réutilisé à des fins gardées confidentielles par des partenaires spécialistes dans les polymères, notamment Arkema
- Les composés fluorés sont séparés sélectivement et recyclés en interne par Recupyl car leur valeur est élevée, et ils présentent un potentiel de pollution important
- Le recyclage des autres composants polymères est sous-traité à des partenaires spécialisés.

Retraitement du mélange de métaux

Les différents métaux sont séparés sélectivement par des procédés variés de chimie verte basés sur des phénomènes électrochimiques (notamment source de consommation d'électricité).

Avantages et inconvénients du procédé

Avantages	Inconvénients
Séparation et retraitement des métaux et polymères assumés par Recupyl (l'intégration de la purification des composants sortants augmente la valeur ajoutée du procédé)	Valorisation du silicium encore en suspens
Pas d'utilisation de produits chimiques toxiques ou à impact environnemental fort	Pas de valorisation des wafers
Purification du verre à sec	
Séparation et retraitement spécifiques des composés fluorés considérés comme dangereux (seul acteur ayant mentionné ce retraitement)	
Valorisation de l'EVA	
Possibilité d'adapter le procédé aux technologies en couches minces	

REILING - PROCEDE DE RECYCLAGE DE VERRE LAMINE ADAPTE AUX MODULES CRISTALLINS [66]

Eléments clés du procédé

PROCEDE DE REILING			Reiling
FROCEDE DE REIEING			Unternehmensgruppe
Nom du procédé	Procédé de recyclage des modules de silicium		
Nom de l'entreprise d'exploitation	Reiling		
Collecteurs	PV CYCLE		
Technologies de modules traitées	c-Si (mono et multi-cristallin), a-Si	
Zone d'implantation	Allemagne : Torgau, Lauen		
Niveau de maturité	En activité depuis 2007. El		
	amélioration de la qualité de		
Performances du procédé	Taux de recyclage	Eta	at de pureté
Taux de recyclage global	74%		
Taux de recyclage spécifique du verre	87,5%	suffisant réutilisat	e qualité mais e pour ion pour fibre de construction
Taux de recyclage spécifique du silicium en wafer	0%		
Taux de recyclage spécifique des métaux	83%		; rarement pur
Coût moyen de recyclage	Elevé ; facturé au client environ 50€/tonne en 2012		
Coût moyen énergétique de recyclage	Broyage est un poste de consommation énergétique majeur (mais pas encore mesuré)		on énergétique
Impact environnemental	Effluents solides: fractions homogènes de métaux, plastiques et autres matériaux variés Effluents liquides: pas d'effluents liquides car procédés de séparation exclusivement mécaniques, pas d'utilisation de produits chimiques Effluents gazeux: poussière issues du procédé de broyage nécessitent une filtration		
Caractéristiques			
Sensibilité au type de module	Qualité du verre très variable car dépend directement de la qualité de l'encapsulant, qui peut plus ou moins être séparé du verre		eut plus ou moins
Capacité installée	3 à 4 tonnes par heure (capacité limitée par l'étape de broyage difficile, le reste du procédé a une capacité de recyclage de 14 tonnes par heure)		
Volumes traités moyens	10 000 tonnes en 2011, au minimum 8 000 en 2012 (prévisionnels)		
Propriétés	Semi-automatisé, continu		
Main-d'œuvre opératoire	10 personnes par équipe (3	équipes p	oar jour)

Caractérisation des intrants et sortants du procédé

INTRANTS – Déchets à traiter	SORTANTS - Produits recyclés
Modules en fin de vie	Granules de verre (+silicium + une partie de l'encapsulant)
Déchets issus de la production (modules finis n'ayant pas la qualité requise)	Aluminium
	Cuivre
	Déchets (encapsulant, plastique et métaux) non recyclés (enfouis)

Reiling a adapté un procédé de recyclage de verre plat et laminé aux propriétés des modules photovoltaïques.

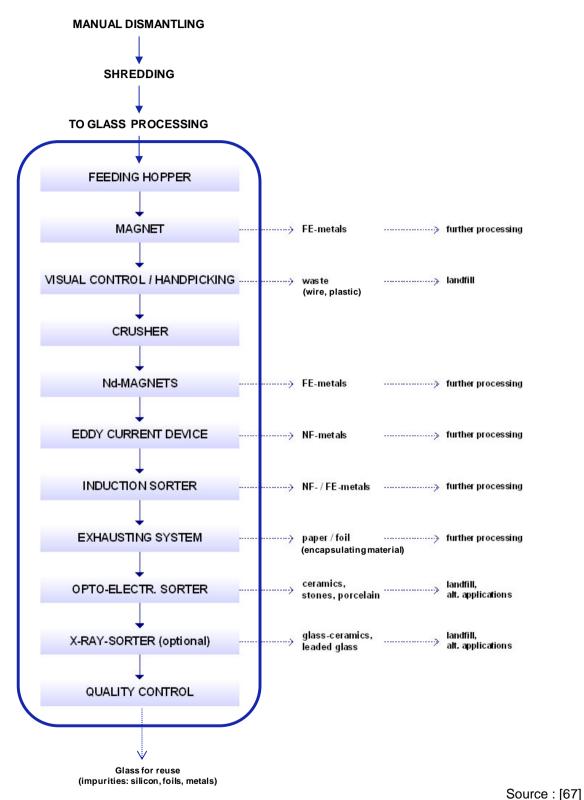


Figure 59 - Fonctionnement du procédé de recyclage de modules cristallins de Reiling

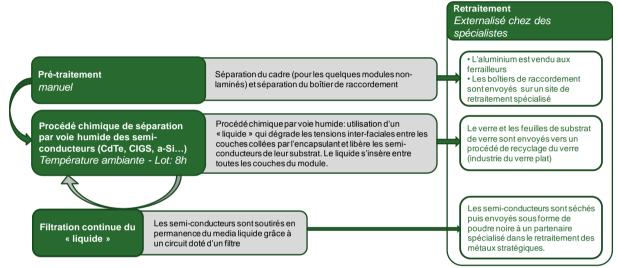
Le schéma explicite l'ensemble des étapes du recyclage des modules photovoltaïques. On note que les deux premières étapes de démantèlement manuel et de broyage sont spécifiques au traitement des modules photovoltaïques.

- Les métaux sont revendus séparément à des ferrailleurs à un prix indexé à leur pureté ;
- Le verre est revendu à l'industrie des isolants (pour la production de fibre de verre) ou à l'industrie du verre de construction ;
- Le silicium n'est pas séparé du verre ;
- L'encapsulant est partiellement séparé du verre mais n'est pas récupéré en quantité suffisante pour être revalorisé en source d'énergie.

Avantages et inconvénients

Avantages	Inconvénients
Le verre, bien qu'impur, peut être réutilisé dans l'industrie de l'isolation (fibre de verre) ou de la construction	Mauvaise qualité du verre recyclé ne permettant pas la réutilisation dans l'industrie du verre moulé ou du verre plat. Le marché des isolants étant plus restreint, il est d'autant plus difficile de trouver des débouchés au verre de mauvaise qualité.
Investissement initial limité: l'adaptation du procédé de recyclage du verre à celui des modules photovoltaïques requiert des changements mineurs	Taux de recyclage faible (silicium non séparé notamment), quantité de matière enfouie importante
Impact environnemental faible (pas d'effluents ni de coproduits)	Pas de recyclage des cellules (pertes de matières premières), le silicium est mélangé au verre
Favorise la création d'emplois	Pertes de métaux précieux (présents dans le verre ou dans les déchets en fin de traitement)
Modèle transposable à tous les recycleurs de verre	Performances dépendent du type de module recyclé (qualité de l'encapsulant, résistance au broyage, etc)
	Coût de la main d'œuvre (fonction de l'implantation géographique)

SAPERATEC - PROCEDE DE RECYCLAGE DES MODULES EN COUCHES MINCES


Eléments clés du procédé

PROCEDE DE SAPERATEC		saperatec	
Nom du procédé	Procédé chimique par voie modules en couches mince	e humide de recyclage des	
Nom de l'entreprise d'exploitation	Saperatec		
Collecteurs	Clients directs + PV CYCLE		
Technologies de modules traitées	Couches minces : CdTe, a-	Si. CIS et CIGS	
Zone d'implantation	Nord de l'Allemagne, Bielef		
Niveau de maturité	Procédé pilote, en cours de		
Investissement / coûts de développement	1 million d'euros		
Performances du procédé	Taux de recyclage	Etat de pureté	
Taux de recyclage global	90% minimum (estimé à 95% en moyenne selon les possibilités de recyclage de l'encapsulant)		
Taux de recyclage spécifique du verre	100%	Qualité pour l'industrie du verre plat	
Taux de recyclage spécifique du cadre et cuivre	100%	Non disponible	
Taux de recyclage spécifique de l'encapsulant	Recyclé ou incinéré selon la qualité de l'encapsulant		
Rentabilité du recyclage	Non rentable à l'échelle actuelle		
Consommation énergétique	Faible. Le procédé est entièrement opéré à température ambiante et ne comprend pas d'étape énergivore		
Effluents et émissions	Eaux usées: traitées sur site, issues du rinçage des modules démantelés en fin d'étape du procédé chimique pour récupérer le « liquide » Effluents gazeux: nuls Effluents solides: rares, la plupart des fractions solides ou liquides sont valorisées (selon la qualité des modules reçus) Effluents liquides: quasi-nuls, les produits chimiques sont régénérés en boucle fermée sur un cycle long en cours de détermination		
Caractéristiques			
Sensibilité au type de module	Faible : procédé adaptable à tous types de technologies sur couches minces Pas de sensibilité par rapport au type d'encapsulant		
Capacité installée	1 à 2 tonnes par jour		
Volumes traités moyens	500 tonnes par an		
Propriétés	Batch; non automatisé; durée du procédé chimique de 1h à 8h selon les cas Breveté en 2012		
Main-d'œuvre opératoire	8 personnes		
Durée de traitement d'un lot	8 heures		

Caractérisation des intrants et sortants du procédé

INTRANTS – Déchets à traiter	SORTANTS – Produits recyclés
Modules en fin de vie	Métaux stratégiques séparés du « liquide » sous forme de poudre noire et sèche
Cellules et modules défectueux en sortie de production	Aluminium (faibles quantités)
	Plaques de verre et de substrat de verre au niveau de pureté élevé
	Feuilles d'encapsulant pour incinération ou recyclage selon qualité des matériaux

Schéma-bloc et description du procédé

Source : Saperatec [68] revu par RECORD / ENEA Consulting Figure 60 - Schéma bloc du procédé de Saperatec

Avantages et inconvénients du procédé

Avantages	Inconvénients
Le « liquide » utilisé pour la séparation par voie humide est utilisé en boucle fermée (recharge annuelle)	Temps de séjour de la phase de séparation : une nuit
Le « liquide » utilisé pour la séparation par voie humide ne requiert aucune régénération	Impact environnemental inconnu
Le verre récupéré est suffisamment pur pour être utilisé dans l'industrie du verre plat	Procédé non-automatisé (implique manipulation des modules trempés dans le liquide)
Le liquide capte universellement tout type de revêtement de semi-conducteurs	Les métaux stratégiques sont mélangés indistinctement le filtrat du « liquide »

SOLAR WORLD - PROCEDE DE RECYCLAGE AUTOMATISE DES MODULES PVS CRISTALLINS

Eléments clés du procédé

Le procédé pilote développé par Solar World est basé sur les recherches du Dr. K. Wambach et a été mis en place en 2003. A l'origine, l'objectif du procédé était de réutiliser les wafers intacts alors que le reste du silicium issu des cellules cassées était vendu en granules.

<u>Note</u>: Le procédé de récupération de cellules non-brisées s'est révélé de moins en moins applicable face à la réduction de l'épaisseur des semi-conducteurs. Le procédé a été abandonné car les rendements étaient trop faibles, et donc le procédé n'était plus rentable.

Le procédé décrit ci-dessous correspond à celui qui a été opéré par Solar World de 2003 à 2010. Depuis 2012, les activités de recyclage de Solar World sont assumées par la Joint Venture Solar Cycle, présidée par K. Wambach, dont l'objectif est décrit plus bas dans la partie

PROCEDE DE SOLAR WORLD	[69]		SOLARWORLD
Nom du procédé	Procédé de recyclage automatisé des technologies cristallines		
Nom de l'entreprise d'exploitation	Solar World		
Nom de la filiale de recyclage des cellules	Sunicon		
Nom de la filiale de collecte	PV CYCLE		
Technologies de modules traitées	c-Si (mono et multi-cristallin	1)	
Zone d'implantation	Allemagne		
Niveau de maturité	Pilote industriel en activité 2010	é commerciale	e de 2003 à
Performances du procédé	Taux de recyclage	Etat et	pureté
Taux de recyclage global	90 – 95,7 % massique [69]		
Taux de recyclage spécifique du verre	94,3% massique [69]	plat) `	e du verre
Taux de recyclage spécifique du silicium en wafer		59% > 99,99	> 99,995 et 99
Taux de recyclage spécifique du silicium granulé	72,8% massique [69]	Réutilisable l'industrie p après le chimique	dans hotovoltaïque traitement
Taux de recyclage spécifique du cadre et cuivre	100% massique [69]		
Rentabilité économique du procédé	Travail manuel important ; nécessite une rémunération pour le service de recyclage		rémunération
Consommation énergétique	Optimisée mais élevée dû au procédé thermique et au procédé mécanique de broyage		
Qualité des effluents	Effluents liquides: Relativement important (utilisation massive de décapants, eaux de rinçage du verre) Effluents gazeux: émissions GES par le procédé thermique, filtration des fumées issus de la pyrolyse nécessaire		
Caractéristiques			
Sensibilité au type de module	The state of the s		la cellule.
Capacité installée	2000 tonnes par an		
Volumes traités moyens	1500 tonnes par an		

Propriétés	Semi-automatisé, boucle fermée	procédé	continu,	recyclage	en
Main-d'œuvre opératoire	Non disponible				

Caractérisation des intrants et sortants du procédé

Intrants	Valeur	Unité	Sortants	Valeur Unités
Modules en fin de vie	100	kg	Wafers au rendement d'origine	2,53 kg
			Cuivre	0,57 kg
			Aluminium (cadre)	10,30 kg
			Granules de silicium	0,95 kg
			Verre	69,92 kg
			Pertes	15,73 kg

Sources : Composition d'un module type par RECORD / ENEA Consulting, taux de recyclage de Solar World

Schéma-bloc et description du procédé

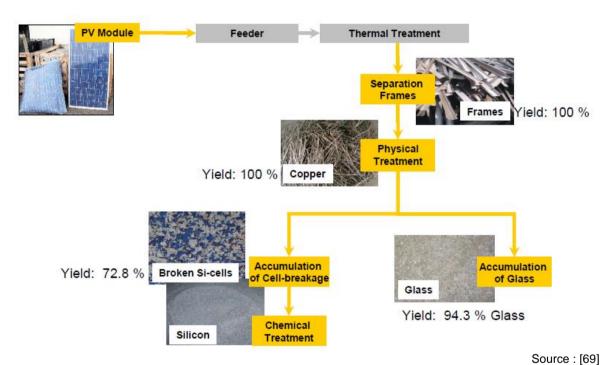


Figure 61 - Schéma du procédé de recyclage de modules cristallins de Solar World en 2010

Procédé thermique de délaminage et procédé mécanique de démantèlement :

Le procédé de démantèlement du module repose sur un **procédé thermique**, chauffant l'ensemble des modules à une température comprise entre 550 et 600°C. Les composants hydrocarbonés sont brûlés à 600°C. Les effluents gazeux du procédé sont traités dans un système d'épurateur à filtre. Après quoi, les cadres en aluminium sont séparés manuellement du reste du module pour être recyclés par un ferrailleur. Le cuivre utilisé dans les câblages est retiré par un **procédé mécanique**. Les cellules sont ensuite séparées du verre. Le verre est broyé et rincé.

Retraitement chimique des cellules :

Les cellules suivent un traitement différencié selon leur état :

Les cellules brisées sont purifiées par un procédé chimique de lixiviation, puis broyées pour finalement être recyclées dans la chaîne de production de silicium photovoltaïque.
 <u>Note</u>: le retraitement du silicium pour le purifier et le recycler dans l'industrie photovoltaïque n'est pas toujours économiquement viable. Selon les prix d'achat du silicium, cette étape est justifiée ou non. Le silicium est alors utilisé dans d'autres applications ne nécessitant pas de purification amont.

• Les cellules non brisées sont décapées, séparées par frottement des métalliseurs, séparées par isotropie des dopants n+ et p-, polies sur la surface, rincées puis séchées. Le wafer est alors d'une épaisseur légèrement plus fine mais de pureté égale au wafer d'origine. Les wafers sont emballés et stockés dans des installations spécifiques.

Avantages et inconvénients du procédé

Avantages	Inconvénients
Capacité élevée et flexibilité grâce au fonctionnement semi-automatisé et continu	Investissement initial élevé
Séparation automatisée de certains éléments	Wafers intacts sur une seule face uniquement (car risque de trace de BSF au dos de la cellule), requiert un emballage adapté préservant la face fonctionnelle de la cellule vers le haut
Pureté des produits recyclés élevée	Faibles taux de récupération des wafers intacts si épaisseur d'origine < 400 micromètres => 76,5% des wafers intacts
Taux de recyclage élevé	La qualité/les causes de fin de vie des modules influent directement sur le taux de réutilisation des wafers
Solar World affirme avoir déjà optimisé la consommation énergétique de ce procédé	Utilisation massive de décapant pour récupération de l'argent réduit rentabilité de l'activité de séparation de l'argent (dépend des prix du marché)
Les wafers sont directement réutilisables, avec les mêmes caractéristiques et quasiment la même épaisseur	
Le recyclage en boucle fermée du silicium induit une réduction des frais de transport et d'approvisionnement en matières premières	

TARGRAY - PROCEDE DE RECYCLAGE DE MODULES [13]

Eléments clés du procédé

PROCEDE DE RECYCLAGE	DE TARGRAY
Nom du procédé	Procédé de recyclage des modules cristallins
Nom de l'entreprise d'exploitation	Targray
Collecteurs	Pas de collecteur associé
Technologies de modules traitées	c-Si (mono et multi-cristallin) et a-Si
Zone d'implantation	République Tchèque, Odolena Voda
Niveau de maturité	Début d'activité en 2009. Procédé pilote, stable depuis fin 2011.
Performances du procédé	Taux de recyclage Etat de pureté
Taux de recyclage global	80 – 90 %
Coût moyen de recyclage	Le service de recyclage est rémunéré par les détenteurs des déchets. Le coût facturé du recyclage varie selon : Coûts logistiques (distance) Volumes à recycler Coûts de prétraitement (dépend du type de laminage) Qualité et composition des modules (type de métalliseur : pâte d'argent, molybdène) Prix de revente sur le marché des matières recyclées Les éventuels accords de rachats des matières premières recyclées (permettant une garantie sur les débouchés) avec le client
Effluents et impact environnemental	Effluents liquides: Utilisation de produits chimiques régénérés régulièrement (mensuellement) Effluents solides: Donnée non disponible Effluents gazeux: Donnée non disponible
Caractéristiques	
Sensibilité au type de module	Forte sensibilité du procédé : la qualité des fractions recyclées sortantes dépend beaucoup des modules arrivants (fabricant, technologie, âge)
Capacité installée	Supérieure à 200 tonnes par an
Volumes traités moyens	80-100 tonnes par an
Propriétés	Procédé par batch
Main-d'œuvre opératoire	4 personnes, 8 à 12 selon les besoins pour le démantèlement manuel des cadres en aluminium

Caractérisation des intrants et sortants du procédé

INTRANTS – Déchets à traiter	SORTANTS - Produits recyclés	
Modules en fin de vie	Granules de verre de qualité variée	
Déchets issus de la production (modules finis n'ayant pas la qualité requise)	Aluminium	
	Cuivre	
	Encapsulant (non-recyclé)	
	Plastique de la boîte de raccordement	
	Argent	
	Silicium de qualité variée (pour application solaire ou métallurgique)	
	Cuivre	

Description du procédé

Le procédé de recyclage de modules cristallins de Targray est constitué successivement de :

- Une étape manuelle de séparation des cadres en aluminium
- Un procédé mécanique
- Un procédé chimique. On note que les produits chimiques sont réutilisés en boucle fermée et changés régulièrement (tous les mois environ) pour assurer une concentration suffisante en agents actifs.

Avantages et inconvénients

Avantages	Inconvénients
Procédé mature et stable	Performances du recyclage (taux de recyclage et qualités des fractions sortantes) variables
	Recharge mensuelle des produits chimiques

4. Structures organisationnelles et acteurs du recyclage des panneaux PV

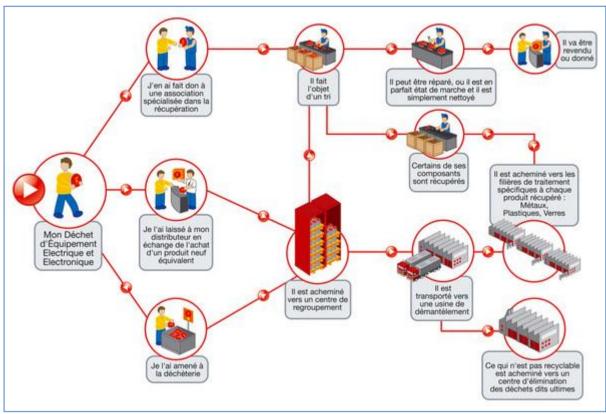
La filière de recyclage des modules photovoltaïques, bien qu'encore jeune et en plein développement, est structurée par un certain nombre d'acteurs clés (producteurs, associations de producteurs, associations de lobby, centres de recherche, institutions publiques) et marquées d'évènements tels que des conférences ou des réunions de diverses parties prenantes pour réfléchir à la mise en place de la filière

Un panel varié d'acteurs sont concernés par le recyclage des panneaux photovoltaïques. Alors que certains coordonnent les différentes filières de recyclage, d'autres mettent en place des procédés, et d'autres encore développent des technologies spécifiques. L'objectif de l'étude est d'identifier de manière aussi exhaustive que possible les différentes classes de parties prenantes et d'évaluer leur implication sur la filière de recyclage. Cette section résume le rôle des principaux acteurs, représentatifs d'une classe d'acteur.

4.1 Les éco-organismes ou associations connexes non agréées, aspirant à organiser la filière de recyclage

LES ECO-ORGANISMES FRANÇAIS

Fonctionnement d'un éco-organisme


Un éco-organisme est une émanation des producteurs des produits concernés agréé par les pouvoirs publics pour endosser légalement la responsabilité du producteur pour les produits en fin de vie (équipements mis sur le marché). C'est entre autres le cas pour les éco-organismes en charge des DEEE. Les producteurs s'associent pour créer une structure d'éco-organisme dont ils sont acteurs de la gouvernance : ils sont en charge de la viabilité économique et des performances du programme de recyclage mis en place.

Les principaux objectifs d'un éco-organisme DEEE sont de collecter, dépolluer et traiter les DEEE (suivant des standards de dépollution et traitement), tout en visant à l'amélioration des taux de collectes via des campagnes de communication auprès du grand public, l'optimisation des systèmes logistiques de collecte, et le suivi des acteurs du recyclage.

Un éco-organisme est à but non-lucratif. Les producteurs se défont de leur responsabilité envers leurs produits en fin de vie en contrepartie d'une provision pour financer le recyclage de chacun des produits. Cet argent provisionné finance :

- l'activité de collecte et de recyclage à part entière ;
- la communication et autres campagnes de sensibilisation auprès du grand public;
- les travaux de recherche et de développement de nouvelles technologies de recyclage ;
- le financement auprès des collectivités (EPCI, communes, agglomérations) qui ont la compétence déchet (soutien aux acteurs de la collecte) ;
- les frais de fonctionnement de l'éco-organisme.

Les revenus des éco-organismes proviennent des éco-contributions et des recettes matières.

Source: Site internet de l'ERP

Figure 62 - La filière de collecte et de traitement des DEEE

Agrément et conformité

L'agrément est attribué à un éco-organisme s'il répond à un cahier des charges défini par les pouvoirs publics qui couvre :

- la qualité des infrastructures
- l'organisation interne,
- les performances environnementales et sociétales,
- la démarche R&D,
- en plus des programmes de traçage des déchets reçus, et de mesure des performances de recyclage.

L'agrément est une procédure qui peut prendre de 3 à 12 mois. Il autorise alors l'éco-organisme en question à endosser la responsabilité du producteur sur le recyclage de ses produits.

Un éco-organisme, « fait défaut » à la directive DEEE en :

- Faisant face à un déficit dans ses activités de recyclage
- Exerçant des pratiques d'exportations des déchets dans les pays en voie de développement
- Ayant des rejets d'effluents dangereux
- Ayant des performances (taux de recyclage) plus bas que ce qui était annoncé

On note que les taux de recyclage imposés par la directive ne sont pas obligatoires. L'objectif est de tendre vers ces résultats, mais l'éco-organisme n'est pas pénalisé financièrement s'il n'atteint pas les objectifs de la DEEE.

Un agrément est valable pour une durée maximum de 6 ans et est spécifique à un ensemble de produits.

Note: la structure d'éco-organismes est commune à tous les pays européens sauf l'Allemagne qui, en interdisant la concurrence de marché pour les déchets, ne délivre pas d'agrément d'éco-organismes. Bien que PV CYCLE et le CERES aient aujourd'hui des activités comparables à celles d'éco-organismes, ils n'auraient pas forcément vocation ou possibilité d'acquérir à court terme un tel statut.

Eco-organismes français

Aujourd'hui 4 éco-organismes mettent en place la bonne gestion des DEEE ménagers : ERP France, Ecologic, Eco-systèmes et Recylum. Ils gèrent aussi des déchets dits professionnels dans le cadre d'accords privés entre les acteurs du recyclage et les producteurs. Les premiers éco-organismes spécifiques aux déchets professionnels sont en passe d'être agréés en juillet 2012. 2 éco-organismes gèrent les déchets piles et accumulateurs.

En France, on compte aujourd'hui 250 centres de traitement spécifiques aux DEEE allant du réemploi, au démantèlement et à la dépollution des DEEE. Ces unités se sont développées récement car, avant la mise en application de la directive DEEE, la plupart des DEEE étaient simplement broyés.

Les centres de traitement sont restreints au recyclage des déchets ménagers ou des déchets professionnels. Ils répondent aux appels d'offre des éco-organismes, et doivent, pour être retenus, satisfaire des conditions techniques. Aucun centre de traitement ne peut recevoir de déchets ménagers si ce n'est pas dans le cadre d'un contrat avec des éco-organismes (décret 2 mai 2012, visant à prévenir les vols en déchetterie).

Taux et modes de collecte

Définition du « Taux de retour » : Masse collectée sur masse mise sur le marché.

Les efforts de collecte sont recommandés par la directive DEEE sans qu'un taux de retour minium ne soit pour autant imposé. A titre d'exemple, on observe aujourd'hui un taux de retour sur l'ensemble des DEEE de 25% à 30% pour Ecologic, soit en moyenne 7kg par habitant par an (l'objectif fixé était à 4 kg/hab/an pour la France en 2009). Le taux de retour varie selon les gammes de produits électroniques (la durée de vie et l'encombrement sont deux facteurs déterminants du taux de retour, les déchets encombrants présentant un taux de retour bien supérieur aux équipements de petite taille). L'objectif européen à horizon 2016 est de 45%.

Outre les systèmes de collecte mis en place par les collectivités locales, une quantité importante de DEEE est drainée par les systèmes individuels de recyclage qui « échappent » aux enregistrements du système DEEE. Les déchets sont qualifiés de déchets historiques lorsqu'ils ont été mis sur le marché avant 2005. Leur recyclage est alors à la charge de l'utilisateur. Les flux de déchets historiques recyclés n'étant pas comptabilisés dans les statistiques DEEE, les taux de retours annoncés par les éco-organismes sont donc légèrement inférieurs à la réalité.

Eco-organismes et modules photovoltaïques, évolutions actuelles

Dans le cas de l'intégration des PV dans la DEEE, les éco-organismes pourraient être directement agrées à recycler ce type de déchets, les PV étant inclus dans la catégorie IV, si les PV ne font pas l'objet d'un traitement différencié, à l'instar des lampes.

Par ailleurs, les éco-organismes n'ont pas commencé à ce jour de recherche ni de développement de solutions techniques à partir des installations disponibles pour le recyclage de modules photovoltaïques.

Importances des systèmes individuels dans la filière photovoltaïque

Hors « zone de traçage DEEE », aucun taux de recyclage n'est imposé et le programme de recyclage est établi par un contrat établi directement entre le producteur et l'usine de recyclage. L'activité de recyclage obéit alors à la loi du marché. Cette part d'activité du recyclage, bien que moins formalisée, concerne une partie des flux de déchets professionnels notamment. En effet, les producteurs ont une obligation d'adhésion à un programme de recyclage uniquement pour les produits ménagers pour le moment. Les flux de déchets photovoltaïques sont aujourd'hui tous «hors zone de traçage DEEE ».

LES ASSOCIATIONS ASPIRANT A ORGANISER LA FILIERE DE RECYCLAGE

En parallèle des éco-organismes agréés, il existe des systèmes qui consistent en un partenariat entre les producteurs et les recycleurs. Qualifiés de systèmes individuels, ils ne permettent pas le transfert de responsabilité légalement. Cette activité consiste en une mutualisation des activités de recyclage.

Des entités comme PV CYCLE et le CERES seraient donc qualifiables d'acteurs structurant les systèmes individuels mais ne peuvent pas encore assumer la responsabilité élargie des producteurs. La responsabilité du produit appartient au détenteur du module photovoltaïque tant que le décret d'application des modifications de la directive DEEE n'est pas publié.

Il existe aujourd'hui deux principaux acteurs de ce type dans la filière du recyclage des modules photovoltaïques : PV CYCLE et CERES, en Europe.

Ces deux acteurs se différencient par le mode de financement de la collecte et du recyclage ainsi que la stratégie de recyclage adoptée. La structure organisationnelle de leur programme de recyclage ainsi que le mode de financement établi sont le cœur de l'étude du système d'acteurs.

L'APESIL et le SEMA sont des syndicats de fabricants de modules photovoltaïques en phase de réflexion sur le thème du recyclage.

PV CYCLE [71]

PV CYCLE est une association internationale (européenne) à but non-lucratif d'organisation de la collecte et du recyclage *volontaire* des modules photovoltaïques en fin de vie. Aujourd'hui leader, en parts de marché, en Europe, PV CYCLE regroupait en avril 2012 un total de 239 membres répartis en deux classes :

- « Full Members » : fabricants, importateurs et distributeurs ;
- « Associated Members » : associations variées, instituts de recherche, grossistes, installateurs et fabricants de cellules.

PV CYCLE a un rôle comparable à celui d'un éco-organisme. Le principal élément différentiateur est la notion d'organisation *volontaire*.

PV CYCLE et la collecte des déchets

PV CYCLE met en œuvre les moyens nécessaires pour collecter un maximum de modules en fin de vie (ménagers ou professionnels) :

- Via des partenaires assurant la logistique pour l'acheminement des déchets vers les centres de traitement (Hellmann Process Management GmbH jusqu'en 2011);
- En mettant en place un réseau de points de collecte partenaires pour les lots de taille inférieure à 30-40 modules. Les points de collectes consistent en une benne spéciale pour stocker des modules photovoltaïques basée chez un partenaire;
- A long terme, en concentrant les flux de déchets dans des centres de stockage ou plateformes logistiques (en cours de développement) :
- En développant un réseau de partenaires ayant un rôle stratégique dans la chaîne de collecte : installateurs/ désinstallateurs d'équipements électriques, c'est-à-dire des professionnels qui savent installer et démanteler des modules photovoltaïques.

PV CYCLE et le retraitement des déchets collectés

D'autre part, PV CYCLE développe un réseau de partenaires recycleurs aptes à traiter les modules en fin de vie :

- En coordonnant les tests de recyclage de modules en fin de vie dans des installations de filières connexes déjà fonctionnelles, en vue de développer un potentiel partenariat avec le recycleur, sous condition de résultats suffisants (taux recyclage supérieur à 10%). Les potentiels partenaires explorés actuellement sont des recycleurs de câbles, de métaux ferreux et non-ferreux, de verre plat, etc...);
- En établissant des contrats de partenariats où PV CYCLE fournit les déchets, en échange d'un service de recyclage de qualité, en accord avec les exigences de qualité imposées par PV CYCLE;

• En participant / finançant des projets de recherche pour le développement de nouvelles technologies.

Fiche synoptique de PV CYCLE				
Statut	Association			
Fonction Produits recyclés	Organisation du recyclage des modules photovoltaïques Modules photovoltaïques atteignant le stade de fin de vie après leur commercialisation			
Début d'activité	Juillet 2007, collecte opérationnelle depuis juin 2010			
Nombre d'adhérents	239 (en avril 2012), dont 211 « Full Members »			
Quantités cumulés PV collectées en 2011	1450 tonnes (45% d'origine allemande)			
Nombre de points de collecte	240 en Europe, dont 30 en France			
Nombre d'employés	6			
Nombre de partenaires recycleurs	Modules cristallins (industrie du recyclage de verre de plat): 2 (et peut-être plus) en Allemagne 1 en Espagne (et quelques autres en phase de test) 1 en France (phase de test) 1 en République Tchèque (phase de test) Modules en Couches Minces 2 en Allemagne (pilotes de procédé spécifiques) 1 en Belgique First Solar et Abound Solar (Individual Schemes) Une vingtaine en développement / phase d'adaptation aux modules			
Siège	Belgique			
Périmètre géographique global	Activités de recyclage: Europe (Allemagne, Espagne, Italie, France, Belgique, Angleterre, Pologne, République Tchèque, Hongrie et pays-Bas) Partenariats: Monde (Europe, Chine, Amérique du Nord)			
Périmètre actuel de collecte	Europe			
Spécificités	Pas de collecte ni de retraitement des déche production « Pay as you go » : participation financière pro quantités de modules mis sur le marché l'année opposition au système de provision et de particip proportionnelle aux quantités de déchets Organisation basée sur le volontariat des prorécupération et du retraitement des modules en fir Développement d'un réseau décentralisé de recycfilière connexes Frais de recyclage assumés par les cotisations mambres (producteurs et distributeurs) indovérses	portionnelle aux précédente, par pation financière oducteurs de la n de vie cleurs au sein de		
	membres (producteurs et distributeurs), indexée d'affaire Réseau de point de collecte dense et en plein dév	reloppement		
Activités parallèles	Audit annuel opéré par une « boîte noire » des me pour assurer la cohérence entre les quantités de le marché et le montant des cotisations Mise en place d'une analyse de cycle de vie recycleur de silicium. A long terme, une analyse	modules mis sur spécifique à un		
	appliquée aux recycleurs de modules en couches Financement et accompagnement de projets de re	minces.		

Partenaires

Centres de traitement de modules PV en partenariat avec PV CYCLE	Divers		
Reiling	EPIA		
Maltha	Recydata (audit des membres)		
Loser Chemie	Hellmann Process Management GmbH (jusqu'en 2011) (transports)		
Saperatec	Partenaires variés (points de collecte)		
First Solar			
Revatech			
Autres (vingtaine)			

Description des activités

PV CYCLE est basé sur un mode de financement qui s'appelle « PAYG » ou « Pay-As-You-Go ». L'objectif principal est de financer les coûts de recyclage générés pendant l'année en cours par les cotisations et les contributions de l'année suivante. PV CYCLE facture sur la base des tonnages de modules mis sur le marché l'année précédente. Les cotisations sont ajustées annuellement aux provisions nécessaires à financer les frais de recyclage et les frais de fonctionnement de l'année suivante.

Alors que les « Full members » contribuent par le biais des cotisations annuelles et de contributions spécifiques, les « Associated members » sont limités aux cotisations annuelles.

Frais annuels d'adhésion et financement des activités

Les frais d'adhésions (membership fee) sont utilisés pour subvenir aux frais de fonctionnement de PV CYCLE (frais administratifs etc...). Ils sont facturés annuellement à l'ensemble des acteurs et sont indexés au chiffre d'affaire des membres.

Catégories de	CA de l'année précédente du	Cotisation	Nombre de voix à
membres	membre en millions d'euros	annuelle	l'assemblée générale
I	> 200 M€/an	25.000€	4
II	100 – 199 M€/an	20.000€	3
III	50 – 99 M€/an	10.000€	2
IV	< 50 M€/an	5.000€	1

Source : Site internet de PV CYCLE

Tableau 34 - Tableau des "Membership fees" et du nombre de voix à l'assemblée générale de l'association PV CYCLE en 2012

La contribution spécifique (contribution) s'adresse aux « full members » uniquement et couvre principalement les coûts de collecte, de traitement des panneaux PV en fin de vie et les coûts liés aux conteneurs de PV CYCLE. La contribution spécifique est inférieure au montant des frais d'adhésions, et est indexée à la quantité de modules photovoltaïques mis sur le marché l'année précédente. Par ailleurs, un problème de confidentialité est soulevé car les quantités mises sur le marché par l'ensemble des producteurs doivent rester confidentielles. Pour résoudre ce problème, PV CYCLE a un partenaire (Recydata), ayant le rôle de « boite noire » pour préserver la confidentialité des volumes vendus. Ainsi PV CYCLE n'est pas directement au courant des montants des contributions spécifiques de chacun des membres. La contribution spécifique est la résultante du produit :

- Des tonnages mis sur le marché l'année n-1
- D'un facteur X, défini comme le ratio du nombre de tonnes pour recyclage entrant dans le système PV CYCLE sur le nombre de tonnes mises sur le marché par l'ensemble des membres. Le facteur X est actualisé annuellement.
- Du coût de traitement (variable chaque année)

Contribution spécifique de l'année n = tonnes de PV mis sur le marché à l'année $n-1 \times X$ \times (coût de traitement d'unetonne de module en fin de vie)

Note à propos des audits auprès des membres cotisants :

Recydata est une association à but non lucratif qui rassemble les données individuelles de chaque entreprise Ils sont supposés fiables et expérimentés dans le domaine de la collecte des données et de l'audit de ce type de déclarations. Recydata travaille actuellement pour des éco-organismes variés comme VALIPAC (déchets d'emballages industriels), VALORLUB (déchets d'huiles usagées), VALORFRIT (déchets des huiles et graisses de friture), RECOVINYL (déchets de plastique PVC), et pour des industriels variés confrontés aux problématiques de responsabilité élargie du producteur. PV CYCLE et Recydata ont signé un contrat de coopération. Aujourd'hui, une quarantaine de producteurs sont audités par an (depuis 2011). Peu d'erreurs ont été commises en Europe. Cependant des imprécisions dans les déclarations ont été observées chez des producteurs en dehors de l'Europe. Ils auraient déclaré des volumes trop importants. L'audit permet d'établir un climat de confiance avec les dirigeants des fabricants de modules. La coopération PV CYCLE - Recydata pourrait s'étendre à long terme à l'audit des recycleurs et de leurs performances.

Collecte et transport

PV CYCLE a développé un réseau important de points de collecte et de partenaires de démantèlement de modules photovoltaïques afin d'assurer un bon taux de collecte auprès des utilisateurs résidentiels et professionnels. En avril 2012, 30 points de collectes étaient établis en France et 240 dans toute l'Europe.

Source : Site internet de PV CYCLE power by Google

Figure 63 - Carte européenne des points de collecte PV CYCLE en avril 2012

Le mode de collecte est différencié selon le nombre de modules rassemblés à collecter. Pour une quantité supérieure à 30-40 modules, les frais de transport jusqu'au centre de recyclage sont

assumés par PV CYCLE lui-même. En revanche, pour les quantités inférieures à 30-40 modules, les détenteurs des déchets sont en charge de l'acheminement des modules jusqu'au point de collecte le plus proche. PV CYCLE prend alors en charge les coûts de transport des modules rassemblés aux points de collecte jusqu'au centre de retraitement le plus proche.

A ce jour, les modules collectés sont acheminés directement au centre de traitement partenaire le plus proche, sous condition d'avoir rassemblé un volume minimum : 2 palettes ou 2 conteneurs PV CYCLE. Les volumes étant faibles, il serait plus rentable financièrement d'établir des centres de stockage intermédiaires dans un réseau logistique plus large et centralisé. Le parti pris provisoire de PV CYCLE d'acheminer directement les modules en centre de traitement permet de limiter les « pertes ou dégradation » au cours de la collecte en cours de structuration. La répartition des modules en fin de vie entre les différents centres de traitement partenaires est basée exclusivement sur des critères géographiques (le plus proche).

Recyclage des modules collectés par les partenaires de PV CYCLE en centre de traitement

Chaque « livraison » de modules en fin de vie fait l'objet d'un prix spécifique proposé par les partenaires recycleurs. En 2012, alors que certains recycleurs sont en passe de rentabiliser le recyclage des modules PV et d'assurer une viabilité économique dans l'hypothèse d'une augmentation importante des volumes de déchets, la plupart des partenaires recyclent « à perte » et demandent une contribution financière en échange de leur service de recyclage. Les frais de recyclage seraient de l'ordre de 50 €/tonne [67].

PV CYCLE développe depuis 2007 un réseau de nombreux recycleurs en leur permettant de tester leur capacité à traiter et recycler les modules sur des échantillons issus du réseau de collecte de PV CYCLE. Jusqu'à aujourd'hui, une trentaine de contacts ont fait des essais, dont 10 qui ont été en mesure de présenter des résultats relativement positifs (présentant un taux de recyclage > 10%, avec possibilité d'amélioration) et 5 avec des résultats convaincants (présentant un taux de recyclage > 80%). PV CYCLE finance aussi des programmes de recherche mais sans en prendre la direction. L'ensemble des informations sur le fonctionnement de PV CYCLE sont rassemblées sur la Figure 64, qui détaille les flux financiers et les services entre l'ensemble des acteurs de la filière :

Historique des activités

PV CYCLE a été fondé en 2007 par un groupement d'industriels du photovoltaïque, et notamment par Dr. Wambach, à l'époque président de Solar World. Jusqu'en 2009, les quelques 2000 modules récoltés en Belgique ont été recyclés avec succès par Sunicon AG avec un taux de recyclage moyen de 84%. En 2010, PV CYCLE a ouvert son réseau de collecte à l'ensemble de l'Union Européenne ainsi qu'à l'EFTA (Association européenne de libre-échange). Suite à un ensemble de remises en cause du système de PV CYCLE, un nouveau président a été nommé pour mener PV CYCLE dans sa politique paneuropéenne, alors ouverte aux modules ménagers et professionnels.

En 2012, PV CYCLE est la solution de recyclage la plus connue parmi les fabricants de modules. Bien que le réseau de points de collecte mis en place soit encore très peu utilisé (représentant seulement 3% des 3000 tonnes récoltés jusqu'en 2012), PV CYCLE continue à multiplier les partenaires de collecte et de recyclage.

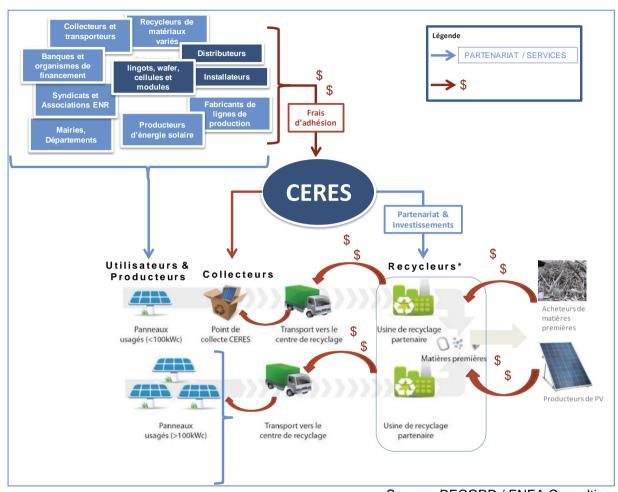
Résultats de la collecte :

- 1500 tonnes collectées au premier trimestre de 2012 ;
- 1450 tonnes collectées en 2011;
- 3200 tonnes collectées depuis le début des opérations (juin 2010) jusqu'à fin avril 2012.

Source : RECORD / ENEA Consulting Figure 64 - Schéma organisationnel de PV CYCLE

Perspectives de développement

Perspectives de développement	Moyens correspondants mis à disposition
Application des BAT (« Best Available Techniques ») pour les procédés de recyclage	Développement progressif d'un réseau de recycleurs aptes à traiter des modules PV avec un niveau de performance imposé (assuré via des audits par Recydata)
Aptitude à recycler tout type de modules sur le marché	Développement de partenaires spécifiques à chaque technologie (tests avec des recycleurs de filières connexes pour les technologies cristallines, et développement de nouvelles technologies spécifiques pour les technologies en couches minces)
Taux de recyclage global de 80% en 2015 et 85% en 2020, en accord avec la DEEE	Démarchage actif des acteurs potentiels dans le Monde
Solution de réutilisation ou de valorisation du silicium actuellement séparé des PV	Programmes de R&D
Acquisition du statut d'éco-organisme dans les pays où c'est nécessaire	Mise aux normes des partenaires
Rentabilisation du recyclage des modules PV pour les centres de retraitement indépendamment de la participation financière de PV CYCLE	Augmentation du volume des livraisons, favorisation de l'augmentation des performances des recycleurs
Mise en place d'un système logistique plus rentable	


CERES - CENTRE EUROPEEN POUR LE RECYCLAGE DE L'ENERGIE SOLAIRE

Description de l'acteur

Le CERES - Centre Européen pour le Recyclage de l'Energie Solaire - est une association loi 1901 à but non lucratif dont l'objectif est de structurer une filière de recyclage, pour laquelle les adhérents membres ne paieraient pas la collecte ni les frais de recyclage et ne régleraient que l'adhésion au CERES pour permettre le fonctionnement de l'association. Le fonctionnement du CERES est basé sur l'hypothèse que l'activité de recyclage des panneaux solaires est rentable intrinsèquement. Le programme du CERES de collecte, de récupération et de recyclage des panneaux et des déchets de production est intégralement financé par les partenaires recycleurs sélectionnés, qui se rémunèrent sur la valorisation des matières premières recyclées. Les déchets peuvent être déposés dans les points de collecte et seront récupérés par les partenaires recycleurs. Le CERES a le souhait de devenir leader (i.e. pouvoir afficher le plus grand nombre d'adhérents parmi les producteurs et distributeurs) dans le domaine du recyclage des panneaux solaires (photovoltaïques et à concentration).

Fiche synoptiq	ue du CERES	
Statut	Association	
Fonction	Organisation du recyclage des modules solaires et des déchets issus de leur production	
Produits recyclés	Modules solaires de tous types et déchets issus de la production	
Début d'activité	Aout 2011	
Nombre d'adhérents	60 (en mars 2012)	
Quantités cumulés PV collectées	450 tonnes	
Nombre de points de collecte	1 point de collecte à Nantes	
Nombre de partenaires recycleurs	1 en phase de développement – début du recyclage en 2013/2014	
Siège	France	
Périmètre géographique global	Monde : basé en France, ancré en Chine, présent en Europe, Asie, Afrique et Amérique du Sud	
Périmètre actuel de collecte	Union Européenne et départements, territoires et collectivités d'outre-mer	
	Collecte et coûts de recyclage à la charge du recycleur	
	Indépendant de tout acteur industriel	
	Transparence financière	
	Transparence de la traçabilité des déchets	
	Recyclage décentralisé (local) par pays ou région	
Spécificités	Centres de collecte et de recyclage répondant aux critères du « WEEE Label »	
	Bonne implantation française : 65% des fabricants français seraient déjà adhérents	
	Système de traçabilité des déchets offrant de la visibilité sur le suivi du recyclage via un intranet	
	Evaluation du bilan carbone des PV recyclés planifiée	
	Fond de garantie pour les installateurs et les agents de démantèlement pour assurer la pérennité des contrats de désinstallation	

Le diagramme ci-dessous résume l'organisation du CERES avec ses différents partenaires. L'ensemble des services et des flux financiers y sont représentés :

Source: RECORD / ENEA Consulting

Figure 65 - Schéma organisationnel du CERES

De même que PV CYCLE, le CERES organise une collecte différenciée selon les volumes de modules en fin de vie à récupérer. Le « volume » minimum d'un lot, mesuré en kWc, pour bénéficier d'un véhicule de collecte « à domicile » est de 100 kWc. Ce sont les partenaires de recyclage qui assument les frais de collecte et de transport des déchets. Les membres cotisants de l'association présentent des activités de natures variées mais liées à la filière photovoltaïque.

Partenaires

CERES et Photocyle travaillent avec le CEA et l'INES à l'élaboration du procédé de recyclage. Aucune information sur le procédé en développement par Photocycle n'est à ce jour disponible.

Frais annuels d'adhésion et financement des activités

Les membres adhérents au CERES payent une cotisation annuelle fixe selon leur activité.

Catégorie	Frais annuels
Producteurs de cellules et/ou de modules de plus de 100 MWc/an	5000 € HT
Producteurs de cellules et/ou de modules de plus de 50 MWc/an et de moins de 100 MWc/an	2000 € HT
Producteurs de cellules et/ou de modules de moins de 50 MWc/an, exploitants, distributeurs, installateurs, bureaux d'études ou associations	1000 € HT

Catégorie	Frais annuels
Entreprises de moins de 10 salariés, universités, laboratoires de recherche,	600 € HT
organisations gouvernementales	

Tableau 35 - Tableau des frais d'adhésion au CERES selon la catégorie en 2012

Aucune autre forme de participation n'est demandée aux producteurs ou membres adhérents du CERES. Seuls les installateurs de grandes installations relevant d'un appel d'offre sont tenus de provisionner les montants requis pour le démantèlement et l'acheminement vers le centre de collecte des modules photovoltaïques en fin de vie. A défaut de provisions, les désinstallateurs d'installations professionnelles et/ou résidentielles sont tenus de financer l'acheminement vers le centre de collecte ou vers le lieu provisoirement établi au frais du CERES pour la collecte des modules d'une installation de capacité supérieure à 100 kWc.

Historique des activités

LE CERES a été fondé par Jean-Pierre Palier, directeur de CP Solar, une entreprise chinoise de production de modules photovoltaïques à Wanzhu. En réaction au manque de transparence qu'il ressentait à ce moment-là vis-à-vis de PV CYCLE, sur leurs activités de recyclage et sur leurs finances, le CERES s'est défini des objectifs de recyclage décentralisé et de traçabilité des modules traités, comme imposé dans le cadre du recyclage de déchets DEEE. Fondé en août 2011, le CERES est composé d'une équipe de 3 personnes à temps plein et compte déjà 60 adhérents de tous types (fabricants, développeurs, installateurs...). M. Palier est le principal investisseur de l'association. Aujourd'hui, certains producteurs d'électricité (utilisateurs professionnels) appellent déjà directement le CERES pour organiser la collecte de panneaux en fin de vie.

Perspectives de développement

Perspectives de développement	Moyens mis à disposition
Déploiement d'un réseau de collecte en Europe pour les utilisateurs particuliers (en moyenne 70% du marché actuel)	Benne dédiée aux panneaux photovoltaïques dans les déchèteries existantes, les déchets collectés seront ensuite acheminés vers une ligne de recyclage [72]
Recyclage 2000 tonnes de panneaux par an visé à partir de 2014	Installation d'une unité de recyclage (Chambéry) par Photocycle (automatisé, « High-Tech », capacité 20 MW/an, procédé de broyage, puis séparation par la chimie verte) [72]
300 adhérents visés à horizon 2013/2014	Démarchage actif des acteurs potentiels dans le Monde
Décentralisation du recyclage	Développement d'unités de recyclage dans chaque pays hôte de membres adhérents du CERES
Acquisition du statut d'éco-organisme	Projet à long terme. En attendant, le CERES délivre des attestations de transfert de responsabilité du producteur vers le CERES
Recyclage au minimum de 85% des matières collectées, avec un objectif de 95% d'ici 2016	Mesure des masses collectées et recyclées, en ayant recours à des technologies de pointe

4.2 Syndicats de fabricants

APESI – ASSOCIATION DES PRODUCTEURS D'ELECTRICITE SOLAIRE INDEPENDANTS

L'APESI a été fondée par Stéphane Duponchel, alors qu'il était à la présidence d'une agence de conseil en environnement (Amezis). L'APESI est le troisième plus gros syndicat français de producteurs de modules photovoltaïques et regroupe des producteurs de panneaux ainsi que des éco-organismes tels que l'ERP.

L'APESI a pour objectif de :

- faire du lobby en faveur du développement durable auprès des parties prenantes politiques et du marché photovoltaïque;
- développer de nouveaux métiers dans la filière photovoltaïque ;
- stimuler et porter l'innovation dans la filière photovoltaïque, notamment dans le recyclage.

Depuis le début de l'année 2012, différents thèmes ont été traités en parallèle par l'ensemble des membres, dont celui du recyclage des panneaux photovoltaïques, nouvellement abordé. Un groupe de travail a été mis en place pour :

- maintenir une veille technologique et un suivi des évolutions de marchés photovoltaïques et du recyclage des PV;
- développer les connaissances des membres ;
- mettre en place à long terme un projet indépendant de recyclage en cherchant des relais industriels opérationnels [73].

SEMA - SOLAR ENGINEERING & MANUFACTURING ASSOCIATION

SEMA est une association de producteurs de modules photovoltaïques aux Etats-Unis qui organise régulièrement des tables rondes sur des sujets clefs de la filière, dont le sujet du recyclage des modules photovoltaïques. Le SEMA n'a pas vocation à s'investir directement dans la filière de recyclage, mais pourrait avoir une influence importante dans ses recommandations d'orientation stratégique pour le recyclage des produits de ses membres.

4.3 Les recycleurs

Paysage d'acteurs et stratégie de recyclage

Parmi l'ensemble des acteurs actuels du recyclage, on en observe différents types, différentiés par leur cœur de métier initial, parmi ceux mentionnés ci-dessous :

- Recycleur initialement producteur de modules PV
- Recycleur initialement producteur d'un produit autre qui requiert des matières premières contenues dans les modules PV
- Recycleur initialement chargé du prétraitement de matières premières de modules PV
- Recycleur initialement recycleur de déchets spécifiques similaires aux modules PV (filières de recyclage connexes)
- Recycleur initialement recycleur de DEEE qui étend son catalogue de produit accepté
- Expert scientifique dont le domaine est commun à celui du procédé de recyclage

Les principaux recycleurs clés dans le développement de la filière du recyclage des modules photovoltaïques sont étudiés ci-après. L'objectif est :

- d'identifier leur valeur ajoutée et les compétences qui leur permettent d'assurer le recyclage des modules photovoltaïques ;
- de comprendre les causes et l'historique de la mise en œuvre de leur activité de recyclage ;
- d'analyser la structure organisationnelle de leur activité de recyclage (financement, partenaires de collecte etc...);
- d'évaluer le rôle qu'ils pourraient avoir dans la filière future via leurs projets prévisionnels.

4.3.1 Recycleurs initialement producteurs de modules photovoltaïques

CP SOLAR

CP Solar est un fabricant de modules photovoltaïques (qui sous-traite la production des cellules) basé en Chine. Les modules produits sont vendus principalement en Europe.

Alors qu'en 2010, CP Solar a vendu plus 40 MWc de modules dans le Monde, plusieurs nouveaux projets se profilent :

- Implantation d'unités de production en Europe,
- Intégration de la production de cellules et de lingots de silicium solaire dans la chaîne de valeur de CP Solar en Chine,
- Mise en place d'une usine de recyclage des modules en fin de vie.

Cependant, CP Solar s'est vu restreint dans son potentiel d'investissement dans l'année 2011 et a abandonné son projet de mise en place d'une usine de recyclage. Bien que le projet soit arrêté, il est fort probable que les études de faisabilité et de pré-dimensionnement soient valorisées à l'avenir lorsque les conditions seront plus favorables.

Fiche synoptique d	e CP Solar
Statut	Entreprise chinoise, fabricant de modules photovoltaïques
Début d'activité	2006
Début d'activité de recyclage PV	Début du projet en 2010 ; début d'activités de recyclage en 2014
Localisation recyclage	France, Chambéry
Périmètre de collecte	Europe
Activités de recyclage de modules	Développement d'un projet d'installation d'une usine de recyclage
Cœur de compétences	Production de modules
Spécificités	Directeur de CP Solar aussi fondateur du CERES et investisseur de Photocycle Abandon du projet de recyclage depuis 2011

FIRST SOLAR

Description de l'entreprise

First Solar est un producteur de modules photovoltaïques en couches minces de type CdTe. Avec une capacité de production de 1,2 GW, First Solar affirme atteindre les coûts de production les plus compétitifs du monde (0,93 \$/Wc en 2011), et occuper la place de numéro 2 mondial de production de modules en couches minces (en 2011).

En mettant en place un système individuel en boucle fermée de collecte et retraitement de ses produits mis sur le marché, First Solar a été un pionner parmi les fabricants de modules PV à mettre en application volontairement le principe de Responsabilité Elargie du Producteur.

Fiche synop	otique de First Solar Inc
Statut	Entreprise privée de production de systèmes PV
Début d'activité	1999
Début d'activité de recyclage des PV	2005 – collecte et retraitement des modules fonctionnels
Localisation recyclage	USA, à Perrysburg, Ohio (2008) Allemagne à Franckfort (2008) Malaisie à Kulim (2009)
Activités de recyclage de modules	3 unités de recyclage des modules sur les sites de production. L'unité en Allemagne a fermé son département hydro-métallurgique et sous-traite la purification avale des métaux stratégiques. Dépôt d'un brevet : « Method and appartus for etching coated substrates » en 2000 (inventeur Dapkus et Bohland). Publication: Hydrometallurgical recycling of the semi conductor material from photoovltaic materials. A. Mezei
Cœur de compétences	Production de modules photovoltaïques
Spécificités	Pionnier du recyclage des modules photovoltaïques (dans la mise en œuvre d'un système individuel et de technologies de points) First Solar assume le service de collecte « à domicile » qui se veut inconditionnel (quelque soit le volume), pratique et gratuit pour maximiser les taux de collecte et limiter l'impact environnemental des modules. Mise en œuvre des moyens logistiques (transport et packaging des déchets) propres à leurs produits. Système de provisions inconditionnelles des coûts de collecte et de recyclage au moment de la mise sur le marché du module. L'argent est alors placé sur un compte appelé fiduciaire d'une fondation. L'installation de chacun des modules First Solar est répertoriée pour optimiser les systèmes de collectes et de recyclage (répartition géographique). Chacun des modules PV est étiqueté au nom de First Solar, avec les coordonnées utiles pour la mise œuvre de la collecte. Audit régulier par un tiers indépendant des unités recyclage et du système de collecte, assurant l'atteinte des objectifs fixés et identifiant les points d'amélioration. Partenaire de PV CYCLE en tant que "Membre à Système Individuel" (MIS) et reporte annuellement les quantités recyclées. Le module ayant atteint le stade de fin de vie, l'utilisateur final de l'installation photovoltaïque doit simplement désinstaller les modules et les

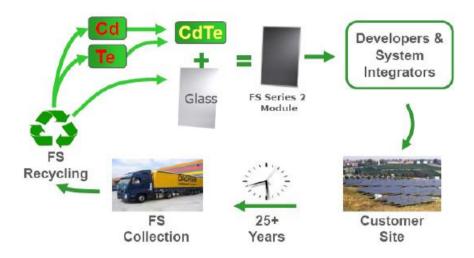
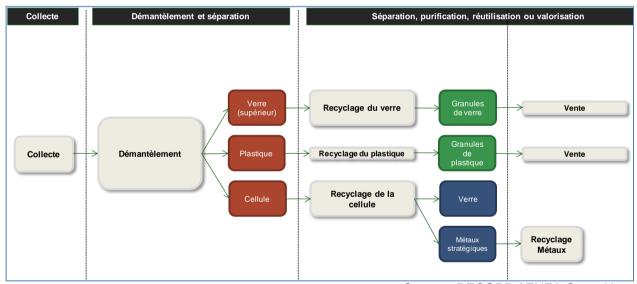



Figure 66 - Diagramme des activités de First Solar

Source: [74]

Description des activités

Source : RECORD / ENEA Consulting

Figure 67 - Activités de First Solar dans les différentes filières de recyclage de modules en fin de vie

Origination des déchets

Périmètre actuel de collecte : Europe et Amérique du Nord

Type de déchets	Provenance	Commentaire
Déchets issus de la production (débris)	Site de production First Solar	Jusqu'en 2011, concerne la majeure partie des déchets recyclés
Modules en fin de vie	Système de collecte de First Solar	Quantités quasi nulles jusqu'en 2011 en-dehors des retours sous garantie.

Perspectives de développement : Partenariats avec d'autres acteurs du recyclage via des accords de confidentialité pour mettre en valeur les recherches sur les technologies développées jusqu'à aujourd'hui

SOLAR CYCLE GMBH

La priorité actuelle de Solar World n'étant pas d'investir dans le développement de technologies de recyclage, Solar World délègue sa part d'activité de recyclage à Solar Cycle GmbH. Un procédé à l'échelle industrielle a été développé par Solar Cycle GmbH, mais sa mise en œuvre n'est pas planifiée par manque de gisement et de potentiel d'investissement de Solar World. La Joint Venture Solar Cycle a maintenant pour but d'accompagner les acteurs dans leurs investissements pour le recyclage des modules photovoltaïques. Karsten Wambach, fondateur de Solar Cycle GmbH est l'inventeur de la technologie ; il a pour objectif de diffuser et valoriser ses efforts de recherches à des acteurs ayant la volonté d'investir dans la filière. Au besoin, une licence pourrait être émise par Solar Cycle pour Solar World, par exemple, dans le cas où ils voudraient à nouveau mettre en œuvre le même procédé.

Fiche synopt	tique de Solar Cycle GmbH [75]	SolarCycle
Statut	Joint Venture entre Solar World AG et Preiss-Daimler Chemical Park (entre autres)	
Investissement	nvestissement 12,7 millions d'euros (financé à 24% par Solar World)	
 Mise en place d'un nouveau procédé de recyclage des modules photovoltaïques (cristallins et aussi probablement des couches minces, à plus long terme) à échelle industrielle. Soutien technique et stratégique à la mise en place de nouveaux projets d'unités de recyclage PV. 		
Lieu	ieu Bitterfled, Allemagne	
Début d'activité	Création de la Joint Venture : 2011	
Spécificités	Spécificités - Fort d'une expérience de recyclage chez Solar World - Détenteur d'un procédé mature	
Cœur de compétences	Production et recyclage des modules cristallins en fin une expérience de 7 ans de recyclage avec un procédé	`

Perspectives de développement :

Mise en œuvre d'un centre de retraitement spécifique aux modules photovoltaïques à échelle industrielle :

- Capacité : 30 000 tonnes par an
- Procédé entièrement automatisé
- Objectifs de performance : 85% et réutilisation des composants recyclés à un niveau de pureté équivalent (évite le *downcycling*)
- Utilisation du même procédé que l'ancien procédé Solar World, avec des technologies optimisées
- Valorisation énergétique des fractions de polymères

SOLAR WORLD

Description de l'entreprise

Solar World est un groupe solaire intégré, de la matière brute à l'installation solaire photovoltaïque finie et de haute qualité, en passant par la fabrication de wafers, de cellules et de panneaux, l'assemblage et la distribution. Le groupe emploie 3300 personnes en Allemagne, en France, en Afrique du Sud, en Asie et aux Etats-Unis. Solar World est un des principaux membres fondateurs de PV CYCLE en 2007, et a mis en place en 2003 un procédé de recyclage des modules photovoltaïques, arrêté depuis 2010. Le président de Solar World, Karsten Wambach fut président fondateur de PV CYCLE également.

Fiche synoptique de Solar World		SOLARWORLD
Statut	Entreprise fabriquant des modules photovoltaïques cristallins	
Entités de Solar World Début d'activité	Sunicon: Approvisionnement, purification et recyclage du silicium Deutsch Solar: Fabrication des wafers Deutsch Cell: Fabrication des cellules Solar Factory: Fabrication des modules (assemblage avec les cellules)	
Début d'activité de recyclage des PV	2003	
Localisation recyclage	Allemagne	
Activités de recyclage 1 unité de recyclage sur le site de production de Freiberg el activité de 2003 à 2010, actuellement pas en activité 1 unité de purification du silicium		
Cœur de compétences	Production et recyclage de silicium solaire, v modules, installation de systèmes photovoltaïq	

Description des activités

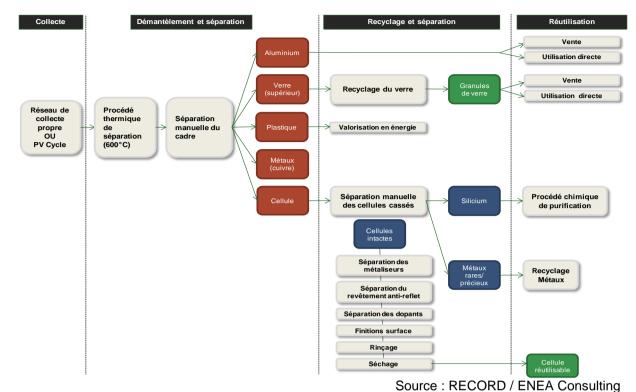


Figure 68 - Activités de Solar World dans les différentes filières de recyclage de modules en fin de vie

Historique du groupe et de ses activités

Solar World (et Sunicon) ont récemment stoppé leurs activités de recyclage en 2010, notamment en raison de la forte baisse des prix du silicium (chute de 200 \$/kg il y a quelques années à 19-20 \$/kg plus récemment). Cette rapide baisse des prix peut s'expliquer par des spéculations passées. Dans un contexte de gisement favorable, l'activité de démantèlement des modules serait déléguée à la Joint Venture Solar Cycle, fondée par K. Wambach.

Origination des déchets

- Déchets issus de la production des unités de fabrication de Solar World, Sunicon et Deutsche Solar
- Majorité des panneaux récoltés par PV CYCLE jusqu'en Juin 2010

Perspectives de développement :

Partenariat avec la JV Solar Cycle

SHOWA SHELL SEKIYU K.K (SOLAR FRONTIER), NEDO ET KITAKYUSHU FONDATION

La société japonaise Showa Shell Sekiyu K.K., société mère de Solar Frontier, a créé une Joint Venture avec d'autres partenaires afin de construire une unité de recyclage de panneaux photovoltaïques au Japon. La phase de développement aboutissant à la mise en œuvre d'un projet pilote a débuté en juillet 2010 et finira en mars 2015. Ce pilote sera le produit de la coopération entre Showa Shell Sekiyu KK et la fondation de la ville de Kitakyushu.

Solar Frontier est un fabriquant et distributeur de modules photovoltaïque de type CIS fondé en 2010. L'entreprise a établi 3 usines de fabrication de modules CIS au Japon, dont l'une est la plus grande en capacité au monde.

Fiche synoptique du projet [76] NEDO SOLAR FRONTIER		
Statut	Joint Venture créée par Showa Shell Sekiyu K.K et dirigée par le NEDO	
Objectif	Développer un procédé pilote de recyclage de modules en fin de vie	
Technologie traitée	CIGS / CIS	
Dates du projet	Juillet 2010 à Mars 2015	
Localisation	Japon, Kita-Kyuushu City	
Périmètre de collecte	Japon	
Activités de recyclage	3 unités de recyclage des déchets issus de la production (modules basse qualité ou indium non utilisé) adossées aux 3 unités de production	
Système de collecte	Mise en place par la collectivité de la ville de Kitakyushu	
Cœur de compétences	Diversifié selon les partenaires	
Spécificités	Solar Frontier adhérent à PV CYCLE Solar Frontier a développé des modules facilement recyclables	
Partenaires	New Energy and Industrial Technology Development Organization (NEDO): porteur du projet Kitakyushu Foundation for the Advancement of Industry, Science and Technology (FAIS) Solar Frontier, filiale de Showa Shell Sekiyu K.K: fournit les modules pour tester les technologies de recyclage développées	
Technologie développée	Le procédé développé repose sur un procédé de séparation électrochimique en séparant les semi-conducteurs de leur substrat à l'aide d'une électrode de molybdène. Les modules sont en amont démantelés (séparation de la couche de verre supérieure, du cadre, du boîtier de raccordement et des câbles)	

Description des activités

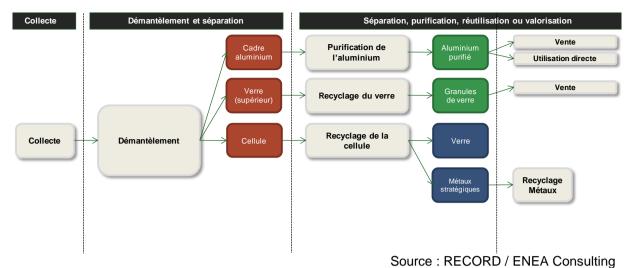


Figure 69 - Activités de Solar Frontier dans les différentes filières de recyclage de modules en fin de vie

Perspectives de développement :

Mise en place d'un procédé industriel de recyclage des modules en couches minces CIS et CIGS en 2015

4.3.2 Recycleurs initialement producteurs d'un produit autre qui requiert des matières premières contenues dans les modules PV

LOSER CHEMIE [61]

Description des activités de l'entreprise

Loser Chemie GmbH développe des unités de production, des procédés et des services innovants dans le domaine du traitement de l'eau, des effluents de l'industrie textile, papetière et de tannerie, mais aussi pour la récupération des métaux stratégiques ayant une plus-value stratégique. Loser Chemie est aussi producteur et distributeur d'une large gamme de produits chimiques. Les activités de l'entreprise sont aujourd'hui orientées vers le recyclage de l'indium, du gallium, du tellure et d'autres métaux stratégiques à partir de déchets de modules photovoltaïques en couches minces. Loser Chemie a également développé une récente activité d'extraction des terres rares d'ampoules économes en énergie. Leur double compétence d'élaboration de procédés chimiques et de mise en place d'installations donne la capacité à Loser Chemie à fournir des solutions intégrées et adaptées aux problématiques posées par les technologies de pointes ou technologies vertes.

Historique des activités et projets

Loser Chemie a commencé ses activités de recyclage de modules photovoltaïques cristallins en 2006 comme moyen d'acquérir quasi gratuitement des matières premières pour leur production à grande échelle de PAC (PolyAluminiumChlorides) et de sulfate d'aluminium. L'objectif était donc de récupérer notamment l'aluminium pour alimenter leur consommation de 45 000 tonnes par an.

Le procédé de recyclage de modules cristallins a fonctionné mais n'est plus utilisé aujourd'hui par manque de modules à recycler. En effet, d'autres recycleurs de modules cristallins à proximité de Loser Chemie présentaient une concurrence trop importante (Sunicon à l'époque).

Fort d'une première expérience, Loser Chemie a changé sa stratégie et s'est concentré sur le recyclage des métaux stratégiques et la réutilisation d'un maximum de matière, en particulier celle du verre.

Depuis 2010, un procédé pilote en batch et d'une capacité de 10 tonnes de cellules par an est fonctionnel. Le démantèlement amont du cadre, si nécessaire, est manuel.

Fiche synopt	ique de Loser Chemie	
Statut	Entreprise industrielle spécialisée en chimie et procédés	
Début d'activités	2004	
Début d'activité de recyclage	2006 : cristallin 2011 : couches minces	
Localisation	Allemagne, Saxe, Zwickau : 3 lieux de production	
Activités	Production de PAC et de sulfate d'aluminium, traitement d'eaux usées, construction d'unité de dosage de solutions polymériques, désinfection, floculation, déshydratation de boues, procédé de recyclage de modules photovoltaïques, de catalyseurs et de terres rares	
Activités de recyclage de modules	1 unité pilote de recyclage de PV cristallins : non utilisée à ce jour 1 unité pilote de recyclage de PV couches minces : 10 tonnes/an de cellules 1 unité semi-automatisée de recyclage PV couches minces : en développement (10 000 tonnes/an)	
Cœur de compétences	Chimie, traitement de l'eau, extraction métaux	
Spécificités	Couts de recyclage très bas selon Loser Chemie Possibilité d'utiliser l'aluminium en interne Possibilité de développer un procédé automatisé en interne	

Possibilité de traiter tous types de couches minces simultanément, ce qui leur vaut l'appellation de procédé « universel ». Le retraitement des modules de type CdTe et CIGS, par exemple, n'a pas besoin d'être exécuté en différé.

Manque de matières premières, réseau d'acteurs du recyclage limité

Description des activités

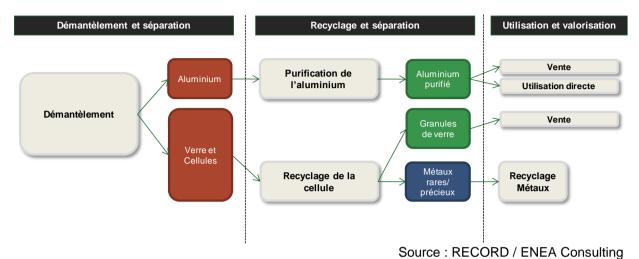


Figure 70 - Activités de Loser Chemie dans les différentes filières de recyclage de modules en fin de vie

Partenaires

Partenaires	Rôle
Reiling	Teste la qualité sur le verre sortant du procédé de recyclage
PV CYCLE	Bonne relation et fournit régulièrement des modules

Origination des déchets

Périmètre actuel de collecte : Europe

Type de déchets	Provenance
Débris issus de la production de modules en couches minces	Principaux clients : Photon, Calixo, Antec
Modules en fin de vie	PV Cycle : peu de volumes

Limites

La principale limite au développement de Loser Chemie est le manque de matière à recycler. M. Parlitzsch témoigne d'une quantité anormalement faible de modules en fin de vie en circulation. La concurrence en hausse en termes de recyclage, combiné aux faibles volumes des modules en fin de vie générés par an sont un frein aux investissements pour le développement de nouveaux procédés.

Perspectives de développement :

Nouvelle unités de recyclage

- En Allemagne :
 - o Technologie en cours de développement (jusqu'à fin 2013)
 - CdTe et CIGS
 - o Capacité de **10 000 tonnes par an** (équivalent à 40 tonnes/jour)
 - o Procédé continu et semi-automatisé
 - Objectif: Récupérer les métaux stratégiques principalement (l'aluminium et les métaux précieux étant en quantités moindres dans les CdTe et CIGS)
 - o Force : Selon Loser Chemie, recyclage le moins cher du marché
 - Limite: Mise en œuvre du projet sous condition d'augmentation des volumes d'approvisionnement en modules à recycler.
- Aux USA [90]:
 - Projet éventuel de d'une unité de démétallisation de modules cristallins et de réutilisation du polychlorure d'aluminium issus du revêtement inférieur des cellules, applicables aux déchets issus de la production ainsi qu'aux modules en fin de vie eux-mêmes.

TARGRAY [13]

Description de l'entreprise

Targray est un groupe industriel dont l'activité d'origine est distributeur et revendeur de matières premières pour des gammes de produits variés.

Targray est un acteur majeur dans l'approvisionnement de matière premières nécessaire à la fabrication de modules photovoltaïques (silicium, de pâte d'argent, etc...) et de batteries Lithium-ion.

Fiche synoptique de Targray		TARGRAY
Statut	Entreprise d'approvisionnement aux matières premières de modules PV	
Début d'activité	1989	
Début d'activité de recyclage des PV	2008	
Localisation recyclage	République Tchèque (unité de recyclage), Europe et Amérique du Nord (collecte)	
Activités de recyclage de modules	 1 unité de recyclage de modules photovoltaïque cristallin (100 t/an) 1 unité de recyclage de cellules cristallines et de déchets issus de la production de wafers (50 t/an) 1 unité de recyclage des déchets de production de cellules en couches minces CdTe R&D – en partenariat avec un expert Tchèque en chimie – pour le développement de nouveaux procédés de recyclage de PV cristallin 	
Cœur de compétences	Achat/vente et distribution de matières premières dans le	e domaine PV
Spécificités	 Recycle les métaux précieux (argent) Collecte indépendante grâce à leur propre réseau Synergie recyclage avec service d'approvisionnement Temps de développement du procédé : 6 à 12 mois Investissement : 1 millions d'euros 	

Description des activités

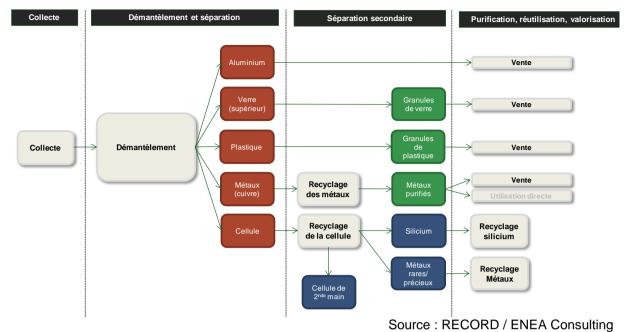


Figure 71 - Activités de Targray dans les différentes filières de recyclage de modules en fin de vie

Origination des déchets

Périmètre actuel de collecte : Europe principalement et Amérique du Nord

Type de déchets	Provenance
Déchets issus de la production	Fabricants de modules (souvent aussi clients de Targray)
Modules en fin de vie	Installateurs
Modules en ini de vie	Utilisateurs particuliers

Perspectives de développement :

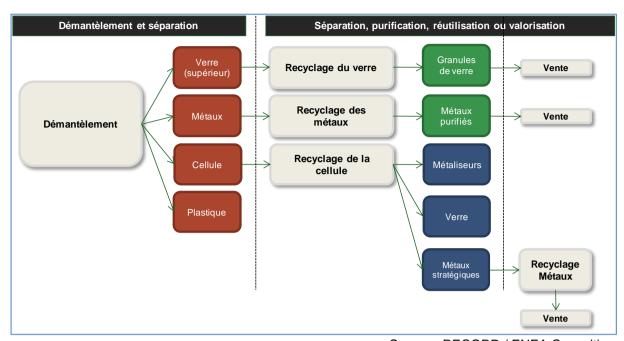
Nouveau procédé de recyclage :

R&D, pas de détails ni de projet à court terme

4.3.3 Recycleurs initialement chargés du traitement de matières premières de modules PV

5N Plus

Description de l'entreprise


5N Plus est chef de file dans la production de métaux et produits chimiques spéciaux. Les produits sont notamment utilisés dans la fabrication de modules solaires, de détecteurs de rayonnement, de refroidisseurs thermoélectriques, de lentilles infrarouges, de dispositifs de mémoire optique et de stockage de données électroniques. 5N Plus tire son nom de la pureté des métaux qu'elle produit, soit 99,999 % et plus.

L'entreprise est aujourd'hui le principal fournisseur de CdTe et de CdS, composants essentiels des modules photovoltaïques en couches minces. Son principal client est First Solar. 5N Plus s'intéresse également au recyclage de rebuts de production de cellules de type CIGS et à jonction triples (dont le substrat de base est composé de Germanium, enrichi avec du InGaAs et du InGaP). Ces technologies étant moins matures que le CdTe, les volumes de produits en fin de vie sont encore trop faibles pour mettre en œuvre l'activité de recyclage. Cependant le procédé a déjà été élaboré.

Récemment, 5N Plus et ses partenaires (First Solar, Abound Solar, Arendi, Calyxo et GE Energy) ont fondé l'organisation PV Thin qui vise à promouvoir l'utilisation de modules en couches minces (CdTe et CIS/CIGS).

Fiche synoptique de 5N Plus		5N PLUS
Statut	Producteur de métaux de grande pureté (5N) et de produits chimiques spéciaux	
Début d'activité	2000	
Début d'activité de recyclage PV	2008	
Localisation recyclage	USA, Canada, Malaisie et Allemagne	
Activités de recyclage de modules	 1 unité de recyclage des déchets de production à Montréal au Canada 1 unité de recyclage des déchets de production à Eisenhüttenstadt en Allemagne 1 unité de recyclage des déchets de production en Malaisie (inaugurée en 2012) 1 unité de recyclage pour les modules en fin de vie à DeForest (USA) 	
Cœur de compétences	Production et purification de métaux stratégiques	
Spécificités	 Assume l'ensemble du cycle du recyclage, du démai purification des métaux stratégiques. 	ntèlement à la

Description des activités

Source : RECORD / ENEA Consulting

Figure 72 - Activités de 5N Plus dans les différentes filières de recyclage de modules en fin de vie

Origination des déchets [55]

Périmètre actuel de collecte : Europe, Amérique du Nord et Malaisie

Type de déchets	Provenance
Modules défectueux ou brisés en sortie de production	Fabricants de modules, partenaires acheteurs de Cd ou Te purifiés (contrat en boucle fermée)
Débris issus de la production	Fabricants de modules, partenaires acheteurs de Cd ou Te purifiés (contrat en boucle fermée)
Modules en fin de vie ou sous garantie	Producteurs variés, partenaires acheteurs de Cd ou Te purifiés (contrat en boucle fermée)
Fractions concentrées en métaux stratégiques (Cd et Te) issues d'un procédé de délaminage de modules PV	First Solar, autres

ARENA TECHNOLOGIES & NEXIS

Description des activités de l'entreprise

Arena Technologies a été fondée par Jean-Pierre Roignant. L'expertise d'Arena Technologies porte sur l'industrie du semi-conducteur, le recyclage du silicium issu de l'industrie du semi-conducteur et de l'industrie photovoltaïque et la production de cellules photovoltaïques à partir de ces rejets de silicium non recyclés et de moins bonne qualité, avec un procédé simple et à faible investissement. Ainsi, Arena Technologies a une capacité de recyclage de 1000 à 1500 tonnes par an environ.

Activités et projets de recyclage de modules photovoltaïques

- Une activité de prospection des projets en développement ainsi que des essais de différentes techniques de séparation sont en cours.
- En parallèle, Arena Technologies développe un projet avec Nexis (start-up de production de PV en couches minces) financé par l'ADEME, sur le recyclage des couches minces. En 2012, le projet est au stade de la recherche. Le procédé recycle initialement des rebuts de production, mais vise à long terme à recycler les modules en fin de vie.

Description des activités

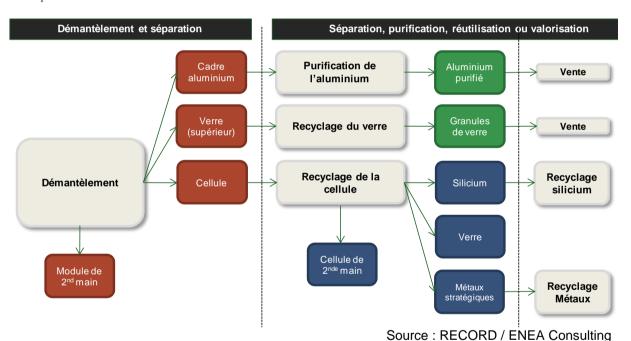


Figure 73 - Activités d'Arena Technologies dans les différentes filières de recyclage de modules en fin de vie

Perspectives de développement :

- Mise en œuvre d'un procédé de recyclage des couches minces (modules en fin de vie et déchets issus de la production) à l'issue du projet de recherche avec Nexis
- R&D sur les possibilités de réparation des modules en fin de vie pour alimenter un marché de seconde main, à l'initiative du fondateur d'Arena, pour qui le marché de seconde main s'est avéré prometteur jusqu'à début 2012.

POSEIDON SOLAR

Description des activités de l'entreprise

Poseidon est une entreprise de recyclage de déchets de silicium issus de la filière de production de cellules cristallines. Poseidon possède également une branche d'activité de développeur de projets solaires en bénéficiant de son réseau de fournisseurs. Poseidon est une entreprise indienne située dans le Sud de l'Inde, à Chennai, et compte parmi ses clients une large majorité d'Européens et quelques Singapouriens, Malais et autres producteurs de cellules solaires d'Asie du Sud Est.

		Poseidort Solar
Statut	Entreprise industrielle spécialisée en recyclage du silicium issu de la production de cellules solaires	
Début d'activité	1983 : Naissance de Poseidon Chemicals, producteur chimiques pour l'industrie textile et papetière	s de produits
Début d'activité de recyclage	2004 : Naissance de Poseidon Solar Services	
Localisation	Inde du Sud, Chennai	
Activités	Recyclage de tous types de silicium et de matières pre production de cellules (wafer brisés, débris) en silic l'industrie photovoltaïque en combinant procédé mécanique Dimensionnement et installation de projets solaires (sur fermes solaires) Recyclage du Cadmium et du Tellure de modules de type	cium issus de le et chimique. toit, sur sols,
Activités de	1 unité industrielle à Chennai en Inde (capacité de 3000 kg/jour)	
recyclage de	1 accord cadre avec Electricia en Espagne pour un projet de	
modules Cœur de	développement d'une nouvelle unité de recyclage	
Cœur de compétences	Chimie, purification du silicium	
	Système en boucle fermée : l'activité est considérée com rémunéré. Les fabricants de cellules, générateurs de silicium, prennent en charge les frais de transports aller-re les frais de recyclage, indexés à la qualité du silicium système permet la réduction des coûts de productio fabricants de cellules photovoltaïques (économie d'énergi des matières premières).	e déchets de etour ainsi que à recycler. Ce n des grands e et sur l'achat
Spécificités	Processus qualité développé : instruments de mesu certification ISO 9001 et ISO 14001.	
	Transport par bateau avec emballage spécifique (aller et client et Poseidon Solar	
	Produits sortants du procédé de recyclage homogène intrants de qualité et sous forme variées	
	Produit : « crucible silicon » de pureté > 7N. Utilisation da « Polysilicon + crucible silicon (5 à 15%) » pour obtenir de cellules équivalents aux multi-cristallin usuels.	

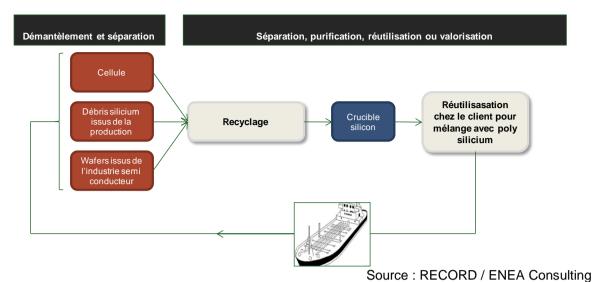
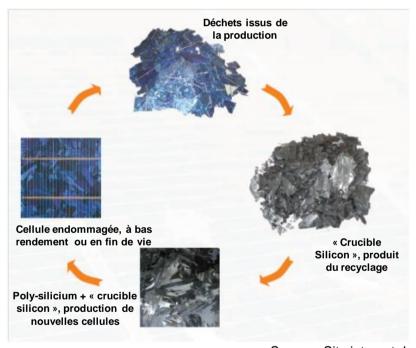



Figure 74 - Activités de Poseidon Solar dans les différentes filières de recyclage de modules en fin de vie

Source : Site internet de Poseidon Solar

Figure 75 - Système de recyclage du silicium de Poseidon Solar

Origination des déchets

Périmètre actuel de collecte : Europe, Asie du Sud-Est (Singapour, Malaisie)

Type de déchets	Provenance
Débris issus de la production de modules en couches minces (sciage, lingots etc)	Fabricants européens principalement (leaders du marché dont Solar Fabrik AG, les autres noms seront gardés confidentiels), fabricants de Singapour et de Malaisie

Type de déchets	Provenance
Wafers ronds issus de l'industrie des semi- conducteurs brisés ou présentant défaut qualité	Clients Européens
Wafers ronds issus de l'industrie des semi- conducteurs brisés ou présentant défaut qualité	
Cellules et wafers à bas rendement	
Cellules et wafers brisés	

Limites

Poseidon Solar, de par la distance géographique qui le sépare de sa clientèle, est limité aux marchés de gros volumes. Par ailleurs, Poseidon est prêt à diversifier son activité de recyclage, mais les volumes du marché actuel des technologies en couches minces ne permettent pas le développement économiquement viable de cette filière.

Projets d'avenir

Perspectives de développement :

Recyclage des cellules CdTe:

 Procédé pilote cours de développement, en attente d'une croissance des importations pour monter en capacité à l'échelle commerciale.

Partenariat avec PV Cycle:

 Poseidon Solar est en contact régulier avec PV Cycle. Les volumes de modules photovoltaïques en fin de vie sont encore trop faibles pour rentabiliser les coûts de transports pour l'exportation des cellules.

Accord cadre avec Electricia, nouvelle unité de recyclage en Espagne :

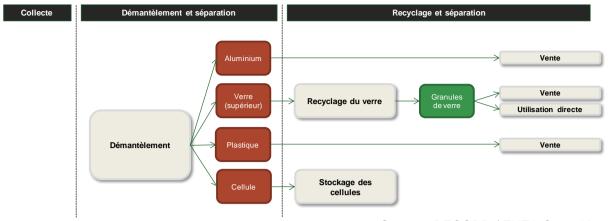
 Le projet n'est pas encore défini mais consisterait en la transposition des technologies de Poseidon en Espagne pour le recyclage de cellules ou de modules. En attente d'un marché plus conséquent pour avancer le projet.

4.3.4 Recycleurs initialement recycleurs de déchets spécifiques similaires aux modules PV (filières de recyclage connexes)

MALTHA [77]

Description de l'entreprise

Maltha est une société de recyclage de verre située en Belgique ainsi que dans d'autres pays d'Europe. Cependant seule l'unité de recyclage de Belgique, située à Lommel, a adapté une de ses lignes de recyclage aux panneaux photovoltaïques en 2006. Cette ligne est alors ambivalente et peut assumer le recyclage du verre normal autant que des celui des modules photovoltaïques. Maltha comprend deux filières de recyclage du verre : le verre plat et laminé et le verre creux.


Historique des activités

De 2006 à 2010, Maltha a entrepris d'adapter son procédé de recyclage du verre plat et laminé aux modules photovoltaïques. Les modifications apportées au procédé sont légères mais restent confidentielles. Pendant la période de développement du procédé, Maltha a été en mesure de recycler des faibles quantités de déchets. La période de 2010 à 2011 a été caractérisée par la croissance importante de la capacité du procédé pour atteindre le stade de commercialisation.

Depuis 2011, Maltha soutient une activité de recyclage intense, bien que le procédé requière encore de nombreux réglages.

Fiche synopt	ique de <u>Maltha</u>	Maltha 🔉
Statut	Entreprise de recyclage	
Début d'activité	1921	
Début d'activité de recyclage des PV	2006	
Localisation	Belgique, Lommel	
Activités	Recyclage du verre creux, plat et laminé dans 8 unité réparties dans 5 pays d'Europe	és de recyclage
Activités de recyclage de modules	1 unité de recyclage de verre adaptée aux modules phot Réseau de collecte développé (50 tonnes par jour)	ovoltaïques
Cœur de compétences	Traitement et recyclage de tous types de verre	
Spécificités	Principale plus-value basée sur le verre	

Description des activités

Source: RECORD / ENEA Consulting

Figure 76 - Activités de Maltha dans les différentes filières de recyclage de modules en fin de vie

Origination des déchets

Périmètre actuel de collecte : Europe

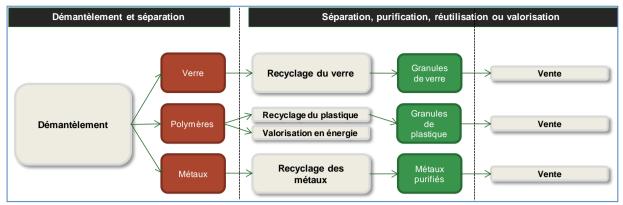
Type de déchets	Provenance
Modules en fin de vie	Réseau de collecte PV CYCLE
	Des collecteurs de déchets variés

Perspectives de développement :

Augmentation de la capacité du procédé actuel :

- Optimisation du procédé actuel en automatisant l'étape de séparation du cadre en aluminium permettant l'augmentation de la capacité
- Capacité prévue de 15 tonnes par heure

RECUPYL - PROJET VOLTAREC


Fort de son expérience en recyclage de piles et batteries, RECUPYL a développé un procédé innovant à faible impact environnemental de recyclage universel des modules photovoltaïques.

Description des activités de l'entreprise

Fiche synoptique du projet Voltarec		
Nom du projet	Voltarec	
Objectif	Elaborer un procédé de recyclage universel des modules photovoltaïques en ayant un impact environnemental limité	
Technologies recyclées	c-Si (potentiellement couches minces également)	
Phasage	2010 - 2012 : R&D Après août 2012 : pilote et industrialisation (probable) (2 ans)	
Valorisation du projet	Objectif d'implantation décentralisée des unités de recyclage (baisse des frais logistiques grâce au fait que le procédé nécessite un investissement initial limité) en Espagne, en Allemagne et en France. L'exploitation serait assurée par des tiers.	
Partenaires	2 grandes entreprises, 1 agence régionale (Pôle de compétitivité Tenerrdis) et 2 laboratoires, tous situés sur le territoire rhônalpin.	
Porteur du projet	Recupyl: PME iséroise développant des technologies de recyclage de déchets électriques et électroniques (piles, batterie, écrans plats, poussières d'aciérie)	
Début d'activité	1995	
Début d'activité de recyclage des PV	2010	
Localisation recyclage	France, Grenoble	
Activités de recyclage de modules	Développement d'un procédé de recyclage des modules photovoltaïques (R&D)	
Cœur de compétences	Recyclage de déchets laminés et contenant des métaux stratégiques de type piles ou batteries	
Spécificités	Fort d'une expérience de développement d'une nouvelle filière de recyclage (batteries)	
Financements	Cofinancé par Recupyl (50%) et le gouvernement français (50%) via le FUI (Fonds Unique Interministériel) et les collectivités territoriales dans le cadre du 8e appel à projets du FUI en juillet 2009.	

Description des activités

Recupyl est une entreprise qui élabore les procédés et technologies nécessaire aux acteurs du recyclage pour atteindre leur but. Recupyl est donc impliqué dans l'activité du recyclage jusqu'au moment de l'installation du procédé, après quoi, l'exploitant prend en charge le procédé.

Source: RECORD / ENEA Consulting

Figure 77 - Activités de Recupyl dans la filière de recyclage des modules photovoltaïques

Projets d'avenir

Perspectives de développement :

- Développement du pilote à partir du mois d'août 2012
- Dissémination de la technologie à échelle industrielle en partenariat avec des recycleurs

REILING [67]

Description de l'entreprise

Fiche synoptique de Reiling Contenent de Reiling		
Statut	Entreprise de recyclage 1954	
Début d'activité		
Début d'activité de recyclage des PV	2007	
Localisation	Allemagne	
Activités	Recyclage de tous types de verre, recyclage du bois, du plastique et du verre	
Activités de recyclage de modules	Unités de recyclage de verre adaptées aux modules photovoltaïques de capacité de 3 à 4 tonnes par heure 10 000 tonnes de modules PV recyclées en 2011	
Cœur de compétences	Traitement et recyclage de tous types de verre	
Spécificités	Principale plus-value basée sur le verre	

Description des activités

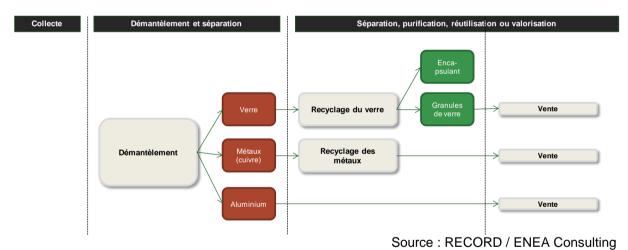


Figure 78 - Activités de Reiling dans les différentes filières de recyclage de modules en fin de vie

Origination des déchets

Périmètre actuel de collecte : Europe

Type de déchets	Part	Provenance
	50% environ (ordre de	Réseau de collecte PV CYCLE
Modules en fin de vie	grandeur soumis à des variations mensuelles)	De sources variées (installateurs, collecteurs de déchets, etc)
Déchets issus de la production	50% environ (ordre de grandeur soumis à des variations mensuelles)	15 à 20 producteurs de modules différents

Perspectives de développement :

Amélioration des procédés actuels :

- Optimisation du procédé de broyage pour augmenter la capacité
- Utilisation de nouvelles technologies de purification du verre pour permettre l'amélioration de la qualité en sortie

Nouveau procédé de recyclage :

- Capacité prévue de 20 tonnes par heure de modules photovoltaïques et de verre
- Localisation : Sülzetal
- Investissement initial: 3 millions d'euros
- Spécificité: procédé dimensionné spécialement pour le recyclage des modules PV permettant d'espérer des performances (taux de recyclage) plus élevées et des produits de meilleure qualité.

REVATECH - PROJET RARETE

Description des activités de l'entreprise

Depuis près de 30 ans, le groupe REVATECH S.A. recycle, valorise et élimine des déchets industriels dangereux et non dangereux par voies mécaniques, biologiques et physico-chimiques et régénère des déchets hydrocarbonés liquides et solides en produisant des coupes pétrolières (gasoil de chauffage, huiles de base, ...).

Le projet RARETE (Recycling Applied to mineral metals and Rare Earth in new TEchnologies) est porté par un groupement de centres de recherche et d'entreprises dont l'objectif est de mettre en place un projet de R&D pour le développement d'un procédé de recyclage innovant.

Fiche synopt	Fiche synoptique du projet RARETE	
Nom du projet	RARETE - Recycling Applied to mineral metals and Rare Earth in new TEchnologies	
Objectif	Elaborer un procédé de recyclage de l'indium et du gallium dans les modules photovoltaïques de seconde génération (CIGS), ainsi que dans les écrans LCD	
Technologies recyclées	CIS / CIGS	
Durée	4 ans	
Date lancement projet	2 mai 2012	
Localisation	Europe (Belgique, France, Suisse, Allemagne)	
Phasage	Phase 1 : R&D (2 ans) Phase 2 : pilote (2 ans)	
Valorisation du projet	En cas de réussite : passage à la phase industrielle. Exploitation : Joint Venture 5N Plus – REVATECH Collecte : probablement Sita	
Partenaires	Consortium composé de 2 industriels et 3 centres REVATECH: Mène le projet, apporte l'expertise métaux stratégiques issus de déchets dangereux par des procédés hydro-métallurgiques notammer Certech (Research and Technological Institute in Centre Terre et Pierre (CTP): centre de rechert traitement, la récupération, la valorisation, no matériaux, des matières solides, qu'elles soien minéraux industriels,), secondaires (déchets, so ou diverses (métallurgiques, chimiques, agroalime SIRRIS: chargé de l'aspect mécanique et automa industrielles SIDECH (filiale de 5N Plus depuis 2011): partent Revatech, expert en recyclage de métaux rares, et de l'indium. Le projet a initialement commence été racheté entre temps par 5N Plus.	e dans le recyclage de x/complexes à retraiter nt. Chemistry) che spécialisé dans le tamment par la voie nt primaires (minerais, pus-produits, boues,) entaires,) atisation des machines aire de longue date de notamment du bismuth
Spécificités de REVATECH	 Expertise en recyclage des métaux dangereux Expertise en hydrométallurgie Forte flexibilité par rapport aux volumes de décritique de rentabilité des activités faible Forte capacité d'adaptation des installations à déchets (réutilisation possible de certaines installe recyclage PV) 	à des types variés de

	 Associé à Sita Potentiel partenariat avec PV CYCLE, qui fournira les modules pour les tests de recherche
Financements 69% par la région Wallonne et 31% par REVATECH et 5N Plus	

Description des activités

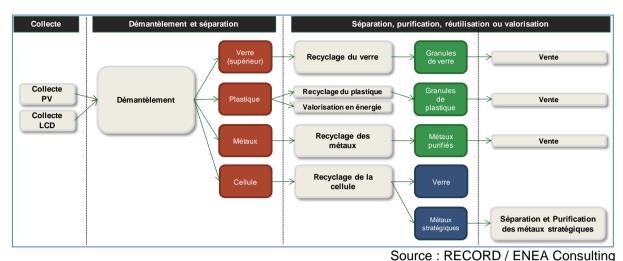


Figure 79 - Activités de Revatech dans les filières de collecte et recyclage de matériaux photovoltaïques

Le projet ayant commencé en mai 2012, le niveau de définition de la technologie est encore limité et le type de procédé envisagé consisterait en un délaminage par un procédé innovant gardé confidentiel.

Les principaux défis de ce projet sont les suivants :

- Optimiser les taux de récupération de l'indium et du gallium. Pour ce faire, la recherche portera sur les moyens de réduire les volumes de matière à broyer (réduction du taux de dilution des métaux rares dans le broyat), notamment en séparant en amont du broyage les couches supérieures et inférieures des modules. Le moment où intervient l'étape de broyage est un élément clé de la recherche et différentes solutions relatives à l'ordre des procédés seront testées.
- Rendre la synergie entre le recyclage des écrans LCDs et des modules photovoltaïques possible. Les dimensions et poids des deux produits étant très différents, la question de savoir si les deux peuvent être traités sur une même ligne de retraitement est encore en suspend.
- Atteindre un objectif de pureté de l'indium et du gallium de 99%.
- Atteindre un niveau de pureté du verre suffisant pour le valoriser. Cependant, un compromis sera sûrement à faire entre les objectifs de pureté de l'indium et du verre.
- Lever les difficultés majeures liées à la mise en œuvre industrielle du principal procédé de séparation.
- Gérer la collecte des déchets: L'exclusivité CIS/CIGS dans le procédé de recyclage implique une problématique de collecte séparée ou de moyens de distinction du CIGS avec les autres types de technologies en couches minces (notamment du CdTe) qui requiert des efforts de recherche et d'innovation organisationnelle.

Origination des déchets

Type de déchets	Provenance	
Modules CIS et CIGS en fin de vie	PV CYCLE, producteurs, Sita, réseau de désinstallateurs	
(Débris issus de la production)*	Producteurs de modules CIGS et écrans LCD	
Ecrans LCD en fin de vie		

* L'intégration des débris issus de la production dépendra du gisement d'indium en Europe et du marché au moment de l'industrialisation

Projets d'avenir

Perspectives de développement :

 Procédé de recyclage intégrant la phase de démantèlement jusqu'à la phase de purification des métaux stratégiques

4.3.5 Recycleurs initialement recycleurs de déchets électroniques qui étend son catalogue de produits acceptés

ECS REFINING

ECS Refining est une entreprise américaine de recyclage de déchets électroniques et déchets dangereux industriels. Le recyclage des modules photovoltaïques s'inscrit dans leur domaine de compétence. La méthode de recyclage est adaptée à la demande du client mais consiste généralement à broyer l'ensemble des équipements pour ensuite séparer les fractions homogènes et les purifier (puis les refondre).

4.3.6 Experts scientifiques dont le domaine est commun à celui du procédé de recyclage associé

DRINKARD METALOX INC

Description des activités de l'entreprise

Le groupe Drinkard développe et installe de nombreux procédés hydrométallurgiques et électrochimiques depuis plus de 30 ans.

Au sein de son activité principale, le secteur minier, Drinkard est à l'origine de nombreux procédés pour le traitement des minerais (argent, or, cuivre, nickel, zinc, plomb...). Les domaines d'activités du groupe sont plus larges, tels que la production de cuivre et d'arsenic pour des opérations de conservation du bois, la récupération de mercure et cadmium pour le recyclage des batteries ou encore le recyclage des modules photovoltaïques en couches minces.

Fiche synoptique de Drinkard		Drinkard Research and Development Corp.
Statut	Entreprise de R&D en hydrométallurgie. Filiales:	
Objectif	Développer un procédé hydrométallurgique pour recycler les modules PV en couches minces (CIS et CdTe)	
Financements	Contribution du Département américain de l'énergie (DOE) : 675 000 \$	
Durée	2 ans aux environs de 1997	
Technologies concernées	Couches minces : CIS et CdTe	
Localisation	USA, Charlotte, Caroline du Nord	

PHOTOCYCLE

Fiche synoptique de Photocycle Statut Association de recyclage des modules photovoltaïques Mise en place d'un nouveau procédé automatisé et à l'échelle Objectif industrielle de recyclage pour tout type de déchets photovoltaïques Lieu Chambéry, France Création : 2011 Dates Début des opérations : 2013/2014 • Capacité à recycler tous types de modules en fin de vie (cristallins et **Spécificités** en couches minces), ainsi que les déchets issus de la production • Association indépendante, en passe d'acquérir le statut de SAS. Investissements Fonds propres de M. Palier, président du CERES et autres **Nombre** 10 d'employés

PV RECYCLING

Description de l'acteur

PV Recycling est une entreprise privée de recyclage des matériaux photovoltaïques. En collaboration avec les fabricants de cellules et modules et d'autres acteurs de la filière photovoltaïque, PV Recyling administre un système de collecte et de recyclage de déchets issus de la production et de modules en fin de vie. L'objectif premier de PV Recycling est de répondre aux besoins des industries pour rendre durable leur activité liée à l'énergie solaire photovoltaïque.

PV Recyling et Encros ont signé en 2010 un accord cadre. PV Recycling assume le rôle d'administrateur et le développement commercial, la mise en œuvre du système logistique et s'assure de la conformité des activités, tandis qu'Encros s'engage à développer, tester, mettre en œuvre et opérer les technologies de recyclage.

Fiche syno	ptique de PV (pv) recycling, llc		
Recycling	supply for the next generation		
Statut	Entreprise privée		
Activité	Gère la collecte et le recyclage de modules photovoltaïques et des déchets issus de leur production		
Produits recyclés	Modules photovoltaïques de tous types et déchets issus de la production		
Début d'activité	2009		
Début des activités de recyclage	Début du développement des technologies de recyclage en 2010		
Quantités cumulés PV collectées	Confidentiel		
Nombre de points de collecte	0 car système de collecte à la demande		
Activités de recyclage PV	 1 entrepôt de stockage des déchets proche de Phoenix. 1 unité de recyclage développée en partenariat avec Encros. Le procédé utilise une technologie de pointe permettant la séparation des éléments sans les dénaturer 		
Localisation	Tempe, Arizona, USA		
Périmètre géographique global	Amérique du Nord, Europe, Asie		
Périmètre actuel de collecte	Amérique du Nord		
	Collecte les déchets issus de la production et les modules en fin de vie		
	Système de collecte à la demande : PV Recycling organise le transport de l'ensemble des déchets de son lieu d'origine jusqu'au centre de traitement, aux frais du client (pas de limite inférieure de volumes)		
	Les frais de transport et de recyclage sont assumés par les clients		
Spécificités	Les partenaires chargés de la purification des produits issus du délaminage des modules assument les coûts de transport des produits du recyclage		
	Système qui répond exclusivement aux besoins des industriels (fonctionnement capitalistique n'ayant pas de vocation à avoir un rôle équivalent aux éco-organismes)		
	Fonctionnement basé sur la volonté propre des utilisateurs des modules PV, conscients de l'importance du recyclage pour faire de l'énergie solaire une énergie « vraiment renouvelable »		

Description des activités

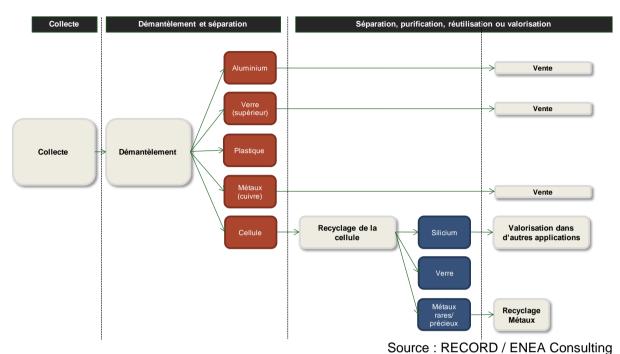


Figure 80 - Activités de PV Recycling dans les filières de collecte et recyclage de matériaux photovoltaïques

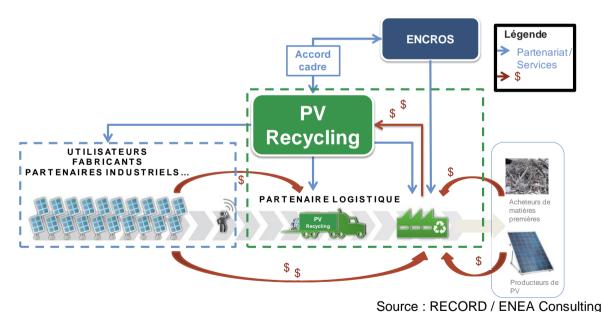


Figure 81 - Schéma explicatif du fonctionnement de la filière de collecte et du recyclage de PV

Recycling

Partenaires

SEIA: Solar Energy Industries Association

Encros : Développe et met en œuvre des solutions de retraitement et recyclage des déchets. Encros travaille en partenariat avec Stephan Kernbaum de Saperatec.

Origination des déchets

Type de déchets	Provenance
Déchets de matériaux photovoltaïques issus de la production	Fabricants de modules, installateurs, utilisateurs privés, désinstallateurs, collecteurs de déchets, distributeurs
Modules défectueux issus de la production	
Modules en fin de vie	

Projets d'avenir

- Perspectives de développement :

 Collecte de 500 modules par semaine [61]
 - Partenariat avec le CERES
 - Montée en capacité de l'unité pilote de recyclage, adaptée aux quantités de modules disponibles
 - Déploiement du même système en Europe puis en Asie

SAPERATEC

Description des activités de l'entreprise

Saperatec est une start-up allemande et située à Bielefeld près de Hanovre agréée pour le recyclage des déchets. Saperatec a développé et breveté un procédé de séparation des colles et revêtements à l'aide d'un procédé par voie humide, puis l'a adapté au recyclage des modules photovoltaïques, permettant le délaminage de l'ensemble des couches du module en préservant l'état et la forme initiaux des différents composants. Saperatec est aussi doté d'un laboratoire de recherche appliquée pour développer d'autres applications du procédé.

Fiche synopt	saperatec				
Statut	Entreprise industrielle de recyclage spécialisée dans la colles et revêtements	séparation des			
Début d'activité	R&D sur faisabilité technique du projet depuis 2008				
Début d'activité de recyclage	Août 2011 : mise en route du procédé pilote				
Localisation	Allemagne, Bielefeld (près d'Hanovre)				
Activités	Séparation d'éléments collés et de revêtements déposés sur substrats				
Activités de recyclage PV	1 unité pilote de recyclage des modules en couches minces				
Cœur de compétences	Chimie, ingénierie technique, séparation des colles et revêtements, procédé par voie humide				
	Résultats uniques, selon Saperatec, en termes de qua du recyclage	lité des produits			
	Limité par le manque d'investissement pour accroître son capital				
Spécificités	Entreprise innovante récompensée par "Innovationspreis der deutschen Wirtschaft » (prix de l'innovation pour l'économie allemande)				
	License BlmSchG pour mise en œuvre et opération de l'unité de 500t/an				
Financé par "High-Tech Gründerfonds" et "Gründerfonds B Ostwestfalen"					

Description des activités

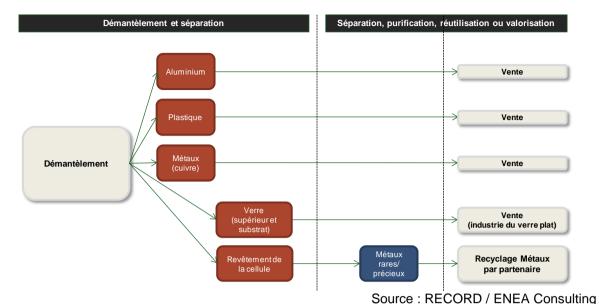


Figure 82 - Activités de Saperatec dans les différentes filières de recyclage de modules en fin de vie

Origination des déchets

Type de déchets	Provenance
Modules défectueux issus de la production (CdTe et CIGS principalement, peu de a-Si)	Représente une large majorité des produits recyclés (suffit à occuper quasiment toute la capacité disponible). En provenance de fabricants variés des modules en couches minces.
Modules en fin de vie	PV CYCLE : Partenariat établi mais peu fonctionnel Partenaires chargés du démantèlement, des installations etc

Projets d'avenir

Perspectives de développement :

Nouvelle unité de recyclage :

- Technologie basée sur le broyage complet du module puis du traitement sec des poudres
- Développement des technologies de séparation des poudres en cours
- Traitement des couches minces
- Capacité de 1 tonne par jour

4.4 Les projets de recherche

NATIONAL PHOTOVOLTAIC ENVIRONMENTAL RESEARCH CENTER

Le Centre National de Recherche sur le photovoltaïque est une sous-branche du centre de *Brookhaven National Laboratory* (BNL), financé principalement par le Département de l'Energie du Bureau de l'Efficacité Energétique et des énergies renouvelables, via le programme sur les technologies solaires. Le centre de recherche a pour principal objectif de minimiser les potentiels impacts HSE des systèmes photovoltaïques actuels et futurs. BNL mène donc une recherche proactive sur différents aspects HSE des systèmes photovoltaïques et communique des informations pertinentes et actualisées.

Activités du BNL

- Diffusion d'un didacticiel HSE pour les ingénieurs lors de la conférence spécialisée annuelle Photovoltaic IEEE.
- Assistance auprès des industriels :
 - à intégrer la composante HSE dans leur processus d'innovation, de production et de commercialisation
 - à identifier les stratégies les plus économiques de prise en compte de la fin de vie de leur produit
 - à évaluer le risque HSE des produits, développer et préparer les dossiers du NEPA (générations de données et de documentation spécialisée).
- Développement de technologies de purification des semi-conducteurs. Un brevet a été déposé sur la séparation du Cadmium et du Tellure après délaminage. Ce brevet a été élaboré en partenariat avec First Solar, qui détient les droits d'auteur exclusifs sur le brevet [78]. Le BNL prévoit le développement d'un nouveau procédé spécifique au cas des CIGS. Cependant la conjoncture économique actuelle ne permet pas aux industriels de financer ces recherches pour le moment.

PROJET RESOLAR – DEVELOPPEMENT D'UN SYSTEME DE COLLECTE EUROPEEN DES MODULES PHOTOVOLTAÏQUES

Commencé en 2009 et publié en 2010, ce projet de recherche est le fruit d'une coopération entre Hellmann Process Management et Kummer Umwelt Kommunikation, financé par Deutsche Bundestiftung Umwelt (DBU). L'objectif de cette étude approfondie est d'analyser les différents aspects d'un système de collecte et de recyclage de modules photovoltaïques, de réunir des partenaires acteurs de la filière actuelle de recyclage et d'établir un projet pilote en Allemagne ou en Espagne. L'ensemble des parties prenantes à la filière de recyclage des photovoltaïques sont représentées dans le projet : les producteurs, les collecteurs, les entreprises de recyclage, les associations organisant la filière, des experts du cadre réglementaire de cette activité et des collectivités locales.

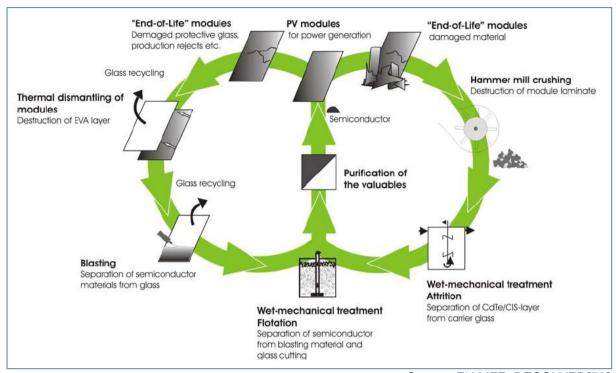
Le projet se déroule en six phases successives :

- Evaluation des quantités
- Analyse de l'acceptabilité d'une filière de recyclage en développement par l'ensemble des parties prenantes de la filière photovoltaïque
- Mise en place d'une stratégie de communication sur les activités de recyclage réalisée avec une plateforme internet dédiée
- Mise en place d'un modèle de structure logistique
- Mise en application du modèle sur un cas test dans une région d'Allemagne ou d'Espagne permettant d'affiner les données sur les aspects financiers du projet
- Mise en application du projet test dans trois autres régions en partenariat avec un comité de suivi établi pour l'occasion

A l'issue de l'étude, trois projets pilotes de collecte en partenariat avec des partenaires locaux ont été mis en place :

- Landkreis Ostalbkreis : Région du Sud de l'Allemagne
- Solartown : Freiburg
- Osnabrück Kreis : Région dans le Nord de l'Allemagne

Ces trois projets pilotes ont permis de tirer quelques enseignements par retour d'expérience :


- Les conteneurs ne sont pas adaptés au transport des modules et provoquent la casse de quasiment tous les modules
- Les problèmes de sécurité des opérateurs sont complexes, en raison de la grande taille des panneaux et de leur toxicité
- La synergie avec les flux de déchets principaux n'est pas possible

PROJET RESOLVED (RECOVERY OF SOLAR VALUABLE MATERIALS, ENRICHMENT AND DECONTAMINATION)

Fiche synoptique du projet RESOLVED RECOVETY OF Solar Valuable Materials, Enrichment and Decontamination - RESOLVET					
Nom du projet	RESOLVED – Recovery of SOLar Valuable Materials, Enrichment and Decontamination – (LIFE04 ENV/D/000047)				
Objectif	Démontrer qu'il est possible de recycler de manière durable les modules photovoltaïques en couches minces : • Récupération des matériaux semi-conducteurs à partir des modules photovoltaïques • Concentration et recyclage de ces matériaux semi-conducteurs dans la fabrication de nouveaux modules en couches minces • Analyse du cycle de vie • Evaluations économiques				
Financements	Cofinancé par la Commission Européenne dans le cadre du programme LIFE Environment Budget total : 1 147 877 € Contribution de LIFE : 563 288 €				
Durée	3 ans (1 ^{er} octobre 2004 – 30 septembre 2007)				
Technologies concernées	Couches minces (CdTe – CIS)				
Localisation	Europe				
Partenaires The Federal Institute for Materials Research and Testing (Bundesa für Material-forschung und –prüfung, BAM): Coordinateur du projet First Solar GmbH: fournisseur de modules PV Deutsche Solar AG: fournisseur de wafers Utrecht University University of Miskolc					

Description des activités

Le projet RESOLVED a pour but d'étudier et d'optimiser les différentes étapes des procédés présentés ci-dessous :

Source: EU LIFE, RESOLVED[79]

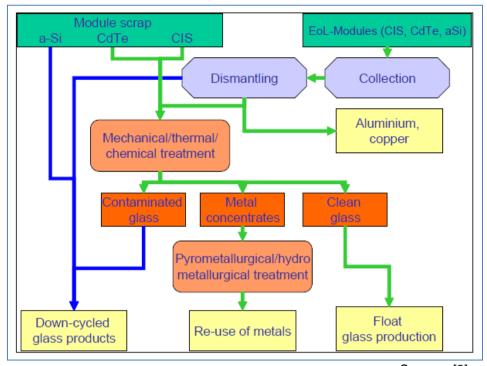
Figure 83 - Schéma du projet RESOLVED (couches minces)

Deux technologies de recyclage sont étudiées :

- procédés mécaniques (attrition et flottation) pour les modules cassés et les déchets issus de la production
- procédés thermiques et mécaniques pour les modules en fin de vie où le substrat de verre est intact

L'avantage majeur de ces procédés par rapport aux autres procédés de recyclage, notamment de lixiviation, est l'utilisation d'une très faible quantité de produits chimiques au cours des différentes étapes, voire son absence d'utilisation pour la voie mécanique.

A l'issue de ce programme de recherche, la faisabilité des procédés de recyclage étudiés a été démontrée. Cependant, les rendements des étapes d'attrition et de flottation sont encore trop faibles (inférieurs à 50 %) et leur optimisation mériterait des études complémentaires.


PROJET SENSE

Description des activités

Fiche synoptique du projet SENSE SENSE - Sustainability Evaluation of Solar Energy Systems - (ENK5-CT-Nom du projet 2002-00639) Identification d'une stratégie de recyclage des modules photovoltaïques **Objectif** en couches minces, et analyse de performance environnementale des modules en incluant leur recyclage dans la méthode ACV. Co-financé par la Commission Européenne dans le cadre du programme **Financements** cadre de la communauté européenne pour les actions communautaires de recherche, de développement technologique et de démonstration Durée Entre 2001 et 2006 **Technologies** Couches minces (CIGS - CdTe - a-Si) concernées Localisation Europe Phase 1 : Test de l'ensemble des technologies de recyclages possibles **Phasage** Phase 2 : Evaluation des performances des technologies retenues University of Stuttgart: coordinateur du projet Free Energy Europe SA: fournisseur de modules PV Gaiker Fundation : spécialiste du recyclage **Partenaires** Fraunhofer ICT: spécialiste du recyclage Ambiente Italia SRL Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Würth Solar GmbH & Co.KG. : fournisseur de modules PV

Description des activités

Le projet SENSE a abouti à des recommandations pour les futures filières de recyclage et à une stratégie de recyclage des couches minces résumée par le diagramme ci-dessous :

Source : [2]

Figure 84 - Diagramme résumant la stratégie de recyclage établie dans le projet SENSE

L'étude comparative des différentes méthodes de délaminage a abouti à la recommandation d'un procédé thermique de pyrolyse de 110 minutes au minimum et à une température comprise entre 450°C et 500°C. Un retraitement des gaz de pyrolyse est alors nécessaire.

4.5 Les lobbies et associations aspirant à stimuler la filière de recyclage, et ONG pour la défense de l'environnement

SVTC - SILICON VALLEY TOXICS COALITION

La SVTC est un groupe à but non-lucratif pour la défense de la santé humaine et la justice environnementale pour répondre à la diffusion rapide des hautes technologies. La SVTC est notamment active dans le domaine de la gestion des déchets électroniques de la Silicon Valley et de la Bay Area en Californie.

Après avoir identifié plusieurs décharges sauvages des déchets issus de la production de semiconducteurs, la SVTC a récemment concentré ses efforts sur la maîtrise des déchets issus de la filière de recyclage. Pour ce faire, le programme « Clean and Just Solar Industry initiative » a été élaboré pour :

- assurer la mise en œuvre par les producteurs de modules PV d'un programme de récupération et de recyclage des modules mis sur le marché,
- assurer la prise en compte dans le dimensionnement et les procédés de production des produits de l'impact potentiel des modules en fin de vie.
- assurer la non utilisation et la non manipulation de produits toxiques ou dangereux.

La SVTC a également mis en place un système de notation des producteurs de modules photovoltaïques, illustré sur la Figure 85.

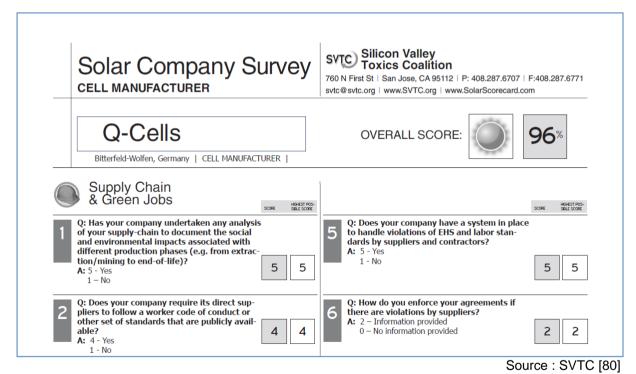
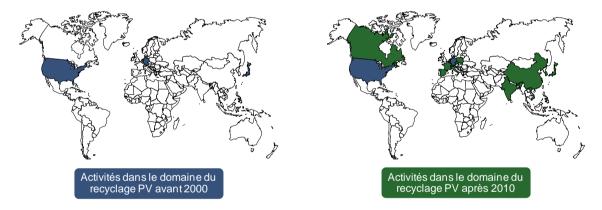


Figure 85 - Exemple de carte de notation de Q-Cells élaborée par la SVTC

Ainsi la SVTC constitue-t-elle une source d'information complète pour ce qui a trait à l'impact environnemental et sur la santé des activités liées à la production, à l'utilisation et au recyclage des modules photovoltaïques.

4.6 Les conférences sur le recyclage des modules photovoltaïques

Nom de la conférence	Organisateur	Lieu et date
Workshop: 34 th IEEE Photovoltaic Specialists Conference (PVSC)	Brookhaven National Laboratory	Philadelphia, USA on June 11 th 2009
1 st International Conference on PV Module Recycling	PV CYCLE, EPIA, UE	Berlin, Germany on January 26 th 2010
2 nd International Conference on PV Module Recycling	PV CYCLE, EPIA, UE	Madrid, Spain on January, 25 th 2011
3 rd International Conference on PV Module Recycling	PV CYCLE, EPIA, UE	Rome, Italy on February 28 th , 2013


5. Mise en perspective des possibilités de recyclage et procédés

5.1 Historique du recyclage PV

La frise de la **Erreur ! Source du renvoi introuvable.** montre que les programmes de recherche sur es méthodes et technologies de recyclage des modules photovoltaïques ont commencé dès le début des années 1990. Cependant l'implantation des premiers procédés pilotes ne date que de 2003, par le précurseur Solar World. L'intensification et la diversification des projets de recherche s'accompagnent d'une prise de conscience des institutions, des producteurs et des utilisateurs de l'importance du recyclage. Cette prise de conscience se traduit par :

- la mise en place de systèmes volontaires de mutualisation de la collecte (PV CYCLE, CERES);
- l'évolution de la réglementation sur la gestion des déchets photovoltaïques ;
- l'exigence des utilisateurs d'inclure la désinstallation et les frais de recyclage dans les contrats d'installation de systèmes solaires ;
- l'inclusion de la phase de recyclage dans les analyses de cycle de vie des PV;
- l'utilisation du programme de recyclage comme un atout marketing auprès des utilisateurs ;
- l'engagement de certaines associations pour la défense de l'environnement dans la cause du recyclage des modules photovoltaïques (SVTC).
- l'organisation de conférences spécifiques à ce sujet (par l'EPIA et l'IEEE) ;

Une intensification notable des activités, notamment par le développement de projets pilote, est observée depuis 2010. Ce phénomène s'accompagne de la diversification des types d'acteurs investis dans cette filière et des pays impliqués :

En effet, suite aux analyses de cycles de vue ayant évalué les impacts du recyclage des modules en fin de vie, il est aujourd'hui admis que le recyclage induit de nombreux bénéfices pour l'ensemble des acteurs de la filière.

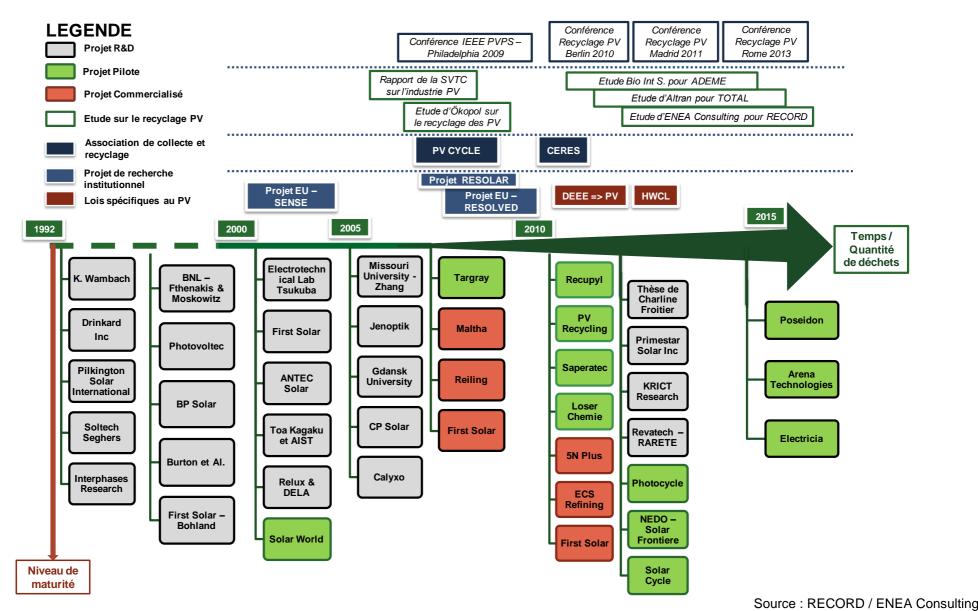


Figure 86 - Frise historique de la filière de recyclage des modules photovoltaïques

5.2 Etat des lieux et analyse globale des solutions de traitement des modules photovoltaïques en fin de vie

L'objectif de l'analyse qui suit est de comparer les acteurs et technologies de la filière actuelle de recyclage des modules photovoltaïques, tout en donnant les éléments nécessaires pour orienter une stratégie spécifique à un contexte donné.

OPTIONS DE RECYCLAGE

Les options de recyclage qui se présentent aujourd'hui à un utilisateur dont le module a atteint le statut de fin de vie sont :

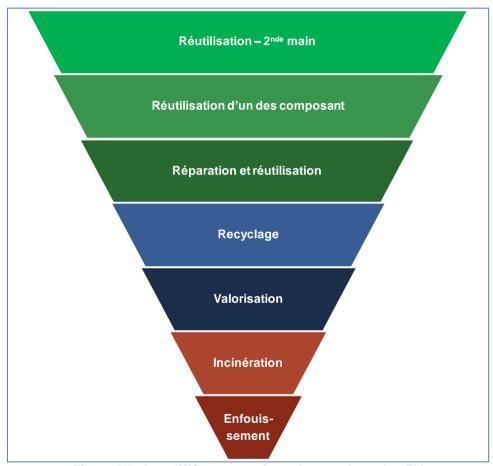


Figure 87 - Les différentes options de recyclage des PV

- Réutilisation : il existe une forte probabilité qu'un marché de seconde main émerge dans les années à venir, notamment dans les pays en voie de développement. Le marché de seconde main se caractérise par des panneaux encore en état de fonctionner mais dont les performances (rendement) sont potentiellement inférieures aux garanties du producteur. Les utilisateurs pour lesquels le facteur critique de choix d'une technologie n'est pas le rendement mais le prix du module (dans le cas où l'espace disponible n'est pas limité par exemple), représentent un volume de marché important (aujourd'hui principalement les projets d'électrification rurale en Afrique et Amérique du Sud). Les modules défectueux à l'issue de la production sont susceptibles d'être valorisés directement dans un marché de seconde main. Ce dernier a pour effet de décaler dans le temps le recyclage.
- Réparation et réutilisation: les cellules photovoltaïques étant connectées en série, une seule cellule défectueuse peut entraîner une baisse importante du rendement d'un module en parfait état. Il est donc envisageable que le remplacement d'une cellule permette de revaloriser le module dans une « seconde vie ». Cette option de retraitement a été peu

- explorée jusqu'à aujourd'hui car les technologies actuelles de laminage des modules (EVA) ne le permettent pas.
- Réutilisation de certains composants: cette option de recyclage a fait l'objet de nombreuses recherches, notamment sur la réutilisation des wafers des modules en fin de vie. Un tel procédé ne permet pas de mettre en place des installations d'une capacité à l'échelle industrielle. Certains recycleurs préfèrent le traitement de matériaux broyés.
- **Recyclage**: cette solution de retraitement consiste en la séparation du module en fractions de composition homogènes réutilisables dans diverses applications. Cette solution, adoptée dans la majeure partie des cas, présente plusieurs cas d'application:
 - En synergie avec une filière connexe: La synergie de deux filières de recyclage permet de faire des économies d'échelle, économiser des frais de transport, bénéficier d'infrastructures communes, économiser sur le développement de nouvelles technologies (au moins le réduire), et utiliser les retours d'expérience des différentes filières développées auparavant.

		FILIERES CONNEXES	•
Technologie	Filière connexe	Résultats des tests de compatibilité	Commentaires
c-Si	Recyclage du verre plat	Positif	Maltha, Reiling : 2 projets à échelle commerciale , taux de recyclage de 75% à
c-Si	Recyclage des lampes	Négatif	1 essai infructueux malgré la bonne compatibilité des technologies prouvée
c-Si + CM	Déchets ménagers	Négatif	Interdit par la directive cadre sur les déchets
c-Si	Déchets électronique	?	
CM	Recyclage des écrans LCD	Recherches en cours	Revatech
CM	Recyclage des télévisions	Négatif	Schott: types de verre différents
СМ	Recyclage des déchets contaminés par des métaux	Recherches en cours	Revatech

Source: RECORD / ENEA Consulting

Tableau 36 - Faisabilité du recyclage avec des filières connexes

- En synergie avec les déchets issus de la production : les flux variés générés par les différentes étapes du cycle de vie d'un module sont, par définition, de même nature. Ainsi leur synergie de recyclage est relativement simple à mettre en œuvre, et intéressante dans le contexte des années à venir où les quantités de modules en fin de vie sont souvent trop faibles pour assurer la pérennité d'une unité de recyclage à capacité élevée. Ainsi, les déchets issus de la production permettent d'initialiser un procédé de recyclage ainsi qu'un réseau de collecte destiné, à long terme, à étendre son périmètre d'activité au recyclage des modules en fin de vie. Cette période permet aussi aux recycleurs de régler les procédés et développer progressivement des systèmes automatisés adaptés aux modules photovoltaïques. Cette solution est principalement applicable au recyclage des couches minces.
- A différents niveaux de qualité du recyclage (pureté finale): le niveau de pureté des fractions sortantes du procédé de recyclage est variable selon les procédés et l'optimisation des conditions opératoires. Le niveau de pureté final des semiconducteurs en particulier est un critère déterminant.
 - Recyclage du silicium : le silicium peut être recyclé à des niveaux variés de pureté, notamment en synergie avec les débris issus de la production.

 Alors que les procédés de traitement de surface (TTS) permettent de récupérer des wafers de qualité quasi-inchangée, ce type d'activité a cessé chez l'ensemble des acteurs du recyclage des modules en fin de vie. En effet, les conditions actuelles du marché ne favorisent pas la viabilité économique du recyclage du silicium. Les autres bénéfices du recyclage du silicium sont détaillés dans la publication de A.Dong et L.Zhang: « Beneficial and Technologica Analysis of the Solar Grade Silicon Waste » [81].

Figure 88 - Niveaux de pureté possibles pour le recyclage du silicium

- Le recyclage des métaux stratégiques (semi-conducteurs des couches minces pour la plupart) consiste soit en une purification complète de chacun des métaux grâce à des procédés complexes d'hydro-métallurgie notamment, soit à une concentration dans une poudre / un liquide alors revendu à une unité de retraitement spécialisée.
- **Valorisation** : la valorisation est une voie de retraitement à la marge, à défaut de dispositifs de recyclage disponibles. Les voies expérimentées jusqu'à aujourd'hui consiste en :
 - o l'incinération des polymères (encapsulant, BSF et câbles),
 - o l'utilisation du silicium impur comme agrégat pour les fours de fontes métallurgiques.
- Traitement en tant que déchet ménager: dans le cas où le module en fin de vie n'est pas capté par une filière de collecte spécifique, il est associé au flux de déchets ménagers dans une déchetterie municipale ou dans les poubelles du particulier. Dans ce cas, le module est isolé dans les centres de tri ou traité comme tout déchet ménager. Cette voie de traitement est maintenant officiellement interdite.

VALORISATION

Le module en fin de vie est recyclé dans la plupart des cas. Les différentes voies de réutilisation et valorisation via les procédés actuels sont résumées ci-dessous :

VOIE DE RECYCLAGE ET VALORISATION DES PRINCIPAUX COMPOSANTS					
Composant	Voie de recyclage et valorisation				
Verre	Industrie du verre plat / industrie photovoltaïque				
	Laine de verre				
	Construction				
EVA	Réutilisation dans l'industrie chimique				
	Incinération pour valorisation énergétique				
Semi-conducteur (Si)	Wafer au rendement d'origine pour la production de cellules PV				
	Wafer à rendement limité pour la production de cellules PV				
	Réutilisation dans l'industrie phovoltaïque en tant que semi-conducteur				
	Utilisation comme agrégat pour les fours de fonte métallurgique				
Semi-conducteur	Réutilisation à son niveau de pureté d'origine				
(couches minces)	Fabrication de nouvelles cellules photovoltaïques				
Métaux stratégiques	Réutilisation à leur niveau de pureté d'origine				
Aluminium	Réutilisation à son niveau de pureté d'origine				

Source: RECORD / ENEA Consulting

Tableau 37 - Voies de recyclage par fraction

CRITERES DE PERFORMANCE

Face à cette diversité de solutions, il convient d'identifier les critères clef permettant de comparer les différents acteurs du recyclage.

Causes de la nécessité du recyclage

Le recyclage des modules photovoltaïques est devenu pour certains acteurs une problématique critique pour un ensemble de raisons interdépendantes :

- les enjeux de ressources consommées et disponibilités des matières premières ;
- l'impact environnemental des panneaux PV en fin de vie (notamment pollution de l'air et des sols) ;
- les impacts sur la santé des panneaux PV ;
- la consommation d'énergie requise au recyclage en lien avec la rentabilité énergétique du solaire :
- les polémiques récentes sur la renouvelabilité et l'impact environnemental important des énergies renouvelables, pensées à l'origine pour l'amélioration de ces facteurs ;
- la volonté des consommateurs de disposer de solutions de recyclage au moment de l'achat.

Facteurs internes orientant la stratégie de recyclage à adopter

En réponse à ces problématiques, la stratégie d'une unité de recyclage de modules photovoltaïques se base sur les principaux facteurs d'influence suivants :

- flexibilité dans la capacité du procédé, capacité à traiter des quantités adaptées aux besoins ;
- volonté de définir un optimum conciliant trois priorités : Réutilisation de matières premières, minimisation de l'énergie consommée, et coût du recyclage.

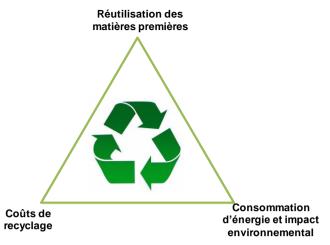


Figure 89 - Priorités du recyclage

Facteur d'influences externes

- les volumes de modules en fin de vie à collecter ;
- la distance aux déchets, et leur quantité;
- l'efficacité de la collecte auprès des utilisateurs particuliers (niveau de conscience du recyclage des utilisateurs et des dés-installateurs, volonté des producteurs à mettre en place un programme de recyclage);
- opportunités de synergie avec d'autres installations ou d'autres flux de déchets ;
- la structure organisationnelle et le mode financement de la collecte et du recyclage ;
- le cadre réglementaire et ses évolutions ;
- les prix des matières premières sur le marché.

Principales difficultés du recyclage des modules photovoltaïques

La mise en place d'une activité de recyclage est complexe dans le contexte actuel de transition caractérisé par :

- de faibles quantités de produits en fin de vie ;
- une diversité des technologies PV notamment dans leur composition (nature des composants et proportions);
- des fluctuations importantes du marché photovoltaïque ;
- des fluctuations potentiellement importantes de la part de marché des différentes technologies
 PV :
- la dépendance directe aux taux de collecte ;
- une évolution constante de la nature des composants, des proportions de compositions;
- une confidentialité importante sur les technologies PV.

Recommandations

Eu égard à ces difficultés, les recommandations suivantes peuvent être formulées :

- Choix du gisement : assurer un gisement stable, notamment en bénéficiant de la synergie de recyclage avec d'autres déchets dont le gisement est stable.
- Choix de la technologie : privilégier un procédé faiblement sensible au type et à la qualité du module traité.
- Choix de la stratégie d'investissement : privilégier un investissement progressif étagé, en optant pour un recyclage centralisé dans un contexte de faible gisement.

Selon certaines études ([82]), il s'avère ainsi au final avantageux économiquement et bénéfique environnementalement de recycler les modules photovoltaïques.

5.3 Analyse comparative des technologies

RECAPITULATIF DES TECHNOLOGIES ET PROCEDES DEVELOPPES

L'ensemble des technologies et procédés de recyclage des modules PV, actifs ou arrêtés, recensés au cours de cette étude est résumé dans le Tableau 38.

Acteur	Maturité	Statut actuel	Type de procédé	Technologies PV traitées	Types de déchets	Pays d'implantation
5N Plus	Industriel	En cours	Procédé chimique CM - CdTe, C		Fin de vie, déchets issus de la production	USA, Allemagne, Malaisie
AIST - Tsukuba. A.Doi	R&D	Arrêté	Procédé chimie organique	c-Si	Fin de vie	Japon
Antec Solar GmBH	R&D	Arrêté	Procédé mécanique - thermique - chimique en milieu gaze	ct CM - CdTe	Fin de vie, déchets issus de la production	Allemagne
Arena Technologies	R&D	En cours	Non disponible	СМ	Fin de vie, déchets issus de la production	France
Calyxo	R&D	Arrêté	Procédé mécanique, procédé chimique	CM - CdTe	Fin de vie, déchets issus de la production	Allemagne
CP Solar	R&D	Arrêté	Procédé thermique, procédé chimique	c-Si	Fin de vie	France (Chambéry)
Drinkard Inc	R&D	Non disponible	Procédé hydrométallurgique / pyrométallurgique	CM- CdTe, CIS, CIGS	Déchets issus de la production	USA (Charlotte, NC)
ECS Refining	Industriel	En cours	Non disponible	СМ	Fin de vie	USA - California & Texas
First Solar / SGS Minerals	Industriel	En cours	Procédés hydrométallurgiques	CM - CdTe	Fin de vie, déchets issus de la production	USA, Allemagne, Malaisie
Fthenakis - BNL	R&D	En cours	Procédé hydrométallurgique	CM - CdTe	Fin de vie, déchets issus de la production	USA
Gdansk university of technology	R&D	En cours	Procédé thermique, procédé chimique	c-Si	Fin de vie, cellules défectueuses	Pologne
Interphases Research	R&D	Arrêté	Procédé électro-chimique	CM - CdTe	Fin de vie, déchets issus de la production	USA
JENOPTIK GmbH	R&D	En cours	Procédé physique (laser)	СМ	Fin de vie	Allemagne
KRICT	R&D	En cours	Procédé chimique	c-Si	Fin de vie	Corée du Sud
Loser Chemie	Pilote	Arrêté	Procédé chimique	c-Si	Fin de vie	Allemagne
Maltha	Industriel	En cours	Procédé mécanique	c-Si	Fin de vie	Blegique
Missouri University	R&D	En cours	Procédé chimique	c-Si	Déchets issus de la production	USA
NEDO	Industriel	En cours	Procédé chimique	CM - CIS, CIGS	Déchets issus de la production	Japon
Pilkington Solar International	R&D	Arrêté	Procédé thermique c-Si + CM - a-Si		Fin de vie	Allemagne
Poseidon	R&D	En cours	Non disponible CM - CdTe		Non disponible	Inde
Poséidon	Industriel	En cours	Procédé chimique c-Si		Déchets issus de la production	Inde
Primestar solar Inc - Rathweg	R&D	Arrêté	Procédé thermique CM - CdTe D		Déchets issus de la production	USA
PV Recycling	Pilote	En cours	Procédé mécanique, procédé chimique	Non disponible	Fin de vie	USA
Recupyl	Pilote	En cours	Séparation mécanique et chimie verte	c-Si + CM	Fin de vie	France (Grenoble)
Reiling	Industriel	En cours	Procédé mécanique	c-Si	Fin de vie	Allemagne
RESOLVED Project	R&D	Arrêté	Procédé mécanique et thermo-mécanique	CM - CdTe, CIS, CIGS	Fin de vie, déchets issus de la production	Europe
REVATECH	R&D	En cours	Procédé confidentiel, procédé hydrométallurgique	CM - CIS, CIGS	Fin de vie	Europe
Saperatec	Pilote	En cours	Procédé chimique	CM	Fin de vie, cellules défectueuses	Allemagne
SENS Project	R&D	Arrêté	Procédé thermique - mécanique et hydrométallurgique	CM	Fin de vie, déchets issus de la production	Europe
SGS Minerals	R&D	En cours	Procédés hydrométallurgiques	CM	Fin de vie, déchets issus de la production	USA
Solar World/ Sunicon	Pilote	Arrêté	Procédé thermique, procédé chimique	c-Si	Fin de vie, déchets issus de la production	Allemagne
Soltech&Seghers	R&D	Arrêté	Procédé thermique	c-Si	Fin de vie	USA
Targray, Partenaire Tchèque	Pilote	En cours	Procédé chimique CM - CdTe		Déchets issus de la production	République Tchèque
Targray, Partenaire Tchèque	Pilote	En cours	Procédé chimique a-Si, c-Si		Fin de vie, déchets issus de la production	République Tchèque
Toa Kagaku Kogyo and AIST	R&D	Arrêté	Procédé chimie organique	c-Si	Fin de vie	Japon

Source: RECORD / ENEA Consulting

Tableau 38 - Liste des technologies et procédés de recyclage des modules photovoltaïques

TECHNOLOGIES DE RECYCLAGE

Méthodologie

Spécificité au déchet recyclé

La plupart des procédés de recyclage sont spécifiques à un type de module (cristallin ou en couches minces). Dans le cas où le procédé est applicable aux deux technologies, il ne peut y avoir de mise en commun des installations pour des raisons réglementaires (directive cadre relative déchets). En effet, la plupart des couches minces étant considérées comme *déchets dangereux*, la réglementation sur les installations impose une distinction claire avec les unités de recyclage de déchets non-dangereux. L'étude comparative des technologies est donc séparée en deux parties spécifiques aux technologies de recyclage cristallines et en couches minces respectivement.

Décomposition fonctionnelle du procédé

Pour comparer et analyser les procédés de recyclage, les différentes technologies et procédés sont rassemblés par fonction. Les trois grandes familles de procédés (A, B et C) différenciables par leur fonction sont représentées dans la Figure 90.

A : Démantèlement					
Méthode 1	Méthode 2				
B1 : Délaminage : séparation du verre de l'encapsulant et des semi-conducteurs	B2 : Séparation des semi-conducteurs et métaux stratégiques				
C1 : Retraitement ou purification des semi- conducteurs	C2 : Séparation du verre et de l'encapsulant				

Parmi l'ensemble des technologies développées jusqu'à aujourd'hui, deux principales méthodes de recyclage coexistent.

- Méthode 1 : cette méthode de recyclage consiste en la séparation de la fraction massique la plus importante (le verre) en altérant la qualité de laminage de l'encapsulant. Le verre est alors facilement séparable du reste du module. Dans cette méthode, le retraitement de la cellule pouvant inclure la séparation des métalliseurs, de l'encapsulant résiduel et la purification des semi-conducteurs, est donc facilité.
- Méthode 2 : cette méthode de recyclage consiste à broyer l'ensemble du module après la séparation de son cadre puis à séparer sélectivement les différents composants en fractions homogènes broyées, et parfois aussi les semi-conducteurs selon les technologies traitées.

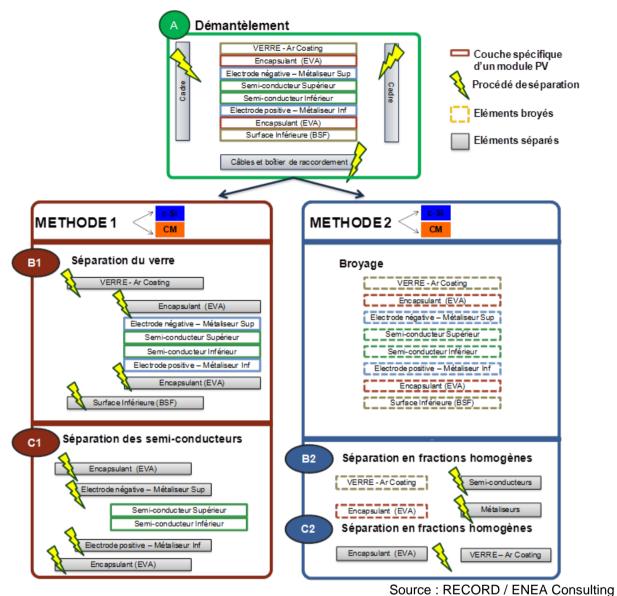


Figure 90 - Schéma représentant les deux méthodes et les trois principales familles d'opération de recyclage

ANALYSE COMPARATIVE DES TECHNOLOGIES DE RECYCLAGE

1. ETUDES DES TECHNOLOGIES DE RECYCLAGE DES MODULES CRISTALLINS

c-Si

Le démantèlement consiste en la séparation du cadre, du boîtier de raccordement et des câbles électriques du reste du module photovoltaïque. La séparation du cadre est une étape qui concerne principalement les modules cristallins. Le démantèlement est actuellement effectué manuellement dans la plupart des cas. Il s'agit là de la principale limite à l'augmentation de la capacité de recyclage des modules cristallins au-delà d'une capacité de 10 tonnes par jour environ.

METHODE B1: DELAMINAGE ET SEPARATION DU VERRE

Le délaminage des modules non-broyés est l'opération clef du recyclage des modules photovoltaïques et qui a fait l'objet d'un grand nombre de programmes de recherche. L'objectif de cette étape est d'obtenir du verre recyclable à des niveaux de pureté élevée en le libérant de l'encapsulant, tout en évitant de dénaturer les semi-conducteurs ou de le séparer de la cellule de sorte à ce qu'il soit facilement récupérable à l'étape suivante.

B1	Méthode de délaminage pour les technologies cristallines				c-Si
Nature du procédé	Détails Maturité		Forces	Faiblesses	Exemples d'utilisateur
Procédé thermique	Lit fluidisé à 450°C rempli de sable fin	R&D - arrêté	Ne dégrade pas la qualité des wafers	 Traitement des effluents gazeux coûteux 	Soltech & Seghers
	Température de pyrolyse : 550°C dans un gaz inerte (N2)	R&D - arrêté		 Dégradation du rendement des wafers de 10 à12% Consommation énergétique élevée 	Pilkington
	Température de pyrolyse : 550°C - 600°C	Pilote mature et maîtrisé	 Pureté élevée des fractions séparées Voie sèche 	 Investissement initial élevé Consommation énergétique élevée 	Solar World, Solar Cycle, CP Solar, Resolved Project
	Dissolution de l'EVA au chlorure d'aluminium	Pilote maîtrisé	Possibilité de récupérer aluminium	Utilisation massive de produit chimique	Loser Chemie
Procédé chimique	Solvant organique : Toluène, 90°C	R&D en cours	 Temps de séjour dans le réacteur réduit par rapport aux solvants conventionnels Récupération possible de wafers de qualité d'origine 	Utilisation de toluène	KRICT

Tableau 39 - Délaminage et séparation du verre, technologies cristallines (B1)

Alors que de nombreuses expériences de tous types ont été effectuées (voir Tableau 25), seuls quelques procédés se sont révélés efficaces. Aujourd'hui, le **procédé thermique de pyrolyse** est majoritairement utilisé.

Il est important de souligner que dans le contexte économique actuel (prix du silicium et capacité d'investissement des acteurs du recyclage), les wafers de silicium ne sont plus recyclés. Dans le cas où le silicium n'est pas recyclé au niveau de pureté du silicium solaire, le procédé de délaminage du verre est soumis à une contrainte de moins et peut avoir recours à des procédés altérant la qualité du silicium sans conséquence. Les facteurs clés d'orientation dans le choix de la technologie pour cette étape seraient le coût opératoire, le temps de séjour et l'impact environnemental.

METHODE C1: SEPARATION ET RETRAITEMENT DES SEMI-CONDUCTEURS

Les principaux enjeux de cette étape sont :

- le retraitement du silicium à un niveau de pureté suffisamment élevé pour économiser des coûts d'énergie dans la production avale, tout en assurant la rentabilité du retraitement ; et sous une forme (wafer ou poudre) optimum pour faciliter sa réutilisation avale.
- la récupération de métaux (stratégiques ou non) venant des métalliseurs principalement. Cette activité de récupération des métaux n'a lieu que pour certains procédés aux performances élevées.

C1	Méthode de séparation des métaux et semi- conducteurs pour les technologies cristallines				c-Si
Nature du procédé	Détails	Maturité	Forces	Faiblesses	Exemples d'utilisateur
	Lixiviation	Com- mercial	 Silicium traité au niveau de pureté du So-Si 	 Consommation de produits chimiques importante Activité peu rentable (sous condition d'une augmentation du prix du silicium) 	Solar World, Solar Cycle, CP Solar, Resolved Project
Procédé chimique	Traitement de surface des wafers : décapage, polissage, texturisation	Procédé maîtrisé – utilisé pour les déchets issus de la producti on uniquem ent	Récupération de wafers permettant un gain considérable sur la consommation énergétique de la production	 Exécution difficile pour des cellules d'épaisseur réduite (telles qu'elles sont produites actuellement) Consommation importante d'acides variés Applicable à des cellules nonbrisées uniquement 	CP Solar, KRICT, Soltech&Seg hers, Gdansk University, Poseidon Solar, Arena Tech, Targray
	Dé- métallisation des cellules	R&D arrêté	 Récupération des métaux (aluminium et argent si présent) 	 Pas de valorisation du silicium Utilisation de produits chimiques 	Soltech & Seghers
Procédé thermique	Pyrolyse de l'EVA sur la cellule à 600°C (1h, gaz d'Argon)	R&D en cours	 Consommations énergétique et de gaz inertes importantes Pas (ou peu) d'altération de la qualité des wafers 	 Durée de traitement relativement élevée 	KRICT

Tableau 40 - Séparation semi-conducteurs, technologies cristallines (C1)

Le traitement de surface des wafers est la technique généralement utilisée aujourd'hui sur des cellules défectueuses issues directement de la chaîne de production et en amont de la phase de laminage, où la cellule est alors encapsulée dans l'EVA. Cette technique n'est plus pratiquée sur les cellules encapsulées ou sur les cellules issues de modules en fin de vie, en conséquence de la tendance actuelle de réduction de l'épaisseur des semi-conducteurs pour la baisse des coûts de production. L'épaisseur réduite du wafer a des conséquences négatives directes sur le taux de recyclage, en rendant compliqué, voire impossible dans certains cas, le recyclage de wafers sans les briser. Ce procédé est donc principalement utilisé pour des déchets issus de la production de wafers.

METHODE B2: SEPARATION DES SEMI-CONDUCTEURS ET METALLISEURS DU BROYAT

Rappel : la phase B2 a lieu en aval du démantèlement et du broyage du module photovoltaïque. Elle a donc pour spécificité de traiter des broyats.

Les principaux enjeux de cette deuxième étape de retraitement des modules photovoltaïques broyés (*Méthode 2*) sont les mêmes que celui de la phase C1 (*Méthode 1*) :

- Séparation sélective des métaux pour faciliter leur purification avale
- Séparation d'une quantité maximale de métaux et semi-conducteurs pour réduire le taux d'impureté du verre et des eaux de rinçage.

B2	Métho	Méthode de séparation pour les technologies c-Si				
Nature du procédé	Détails	Maturité	Forces	Faiblesses	Exemple utilisateur	
Procédé mécanique	Criblage, cyclonage	, (Aout	 Procédé par voie sèche Capacité potentielle élevée 	 Ensemble des métaux captés indistinctement Retraitement des effluents gazeux nécessaire 	Recupyl	
mecanique	Tamis, machine à courant de Foucault, pistolet à air	Commer cial en cours d'optimis ation	 Par voie sèche, investissement initial très faible Capacité élevée 	 Faible pureté du verre Pas de valorisation des métaux ni du Si 	Maltha, Reiling	

Tableau 41 - Séparation semi-conducteurs, technologies cristallines (B2)

Les **procédés mécaniques** sont aujourd'hui les seules solutions de séparation des métaux et du silicium broyé. Dans le cas du procédé de Recupyl, la séparation du silicium est indistincte des autres métaux et dans le cas des procédé de recyclage du verre le rendement est extrêmement bas. Peu de recherche sont aujourd'hui en cours sur le sujet. Le procédé de Recupyl est aujourd'hui le seul apte à séparer puis valoriser le silicium broyé dans d'autres applications.

Cette étape peut être complétée, selon les cas et le niveau d'intégration du procédé de recyclage, par une étape de séparation sélective des différents métaux stratégiques et semi-conducteurs.

B2	Méthode d et se	c-Si			
Nature du procédé	Détails	Maturité	Forces	Faiblesses	Exemple utilisateur
Procédé électrochi mique	Champ électrique dans une solution électrolyte de chimie verte	Pilote (Août 2012)	 Impact environnemental limité Séparation sélective des métaux (réutilisation avale facilitée) Traitement de l'ensemble des métaux présents 	 Consommation d'électricité Pas de récupération des wafers mais uniquement du silicium en poudre 	Recupyl

Tableau 42 - Séparation sélective métaux / semi-conducteurs, technologies cristallines (B2)

Le **procédé électrochimique** récemment développé par Recupyl présente l'avantage de séparer sélectivement les différents métaux stratégiques (leur retraitement est donc simplifié) avec des produits issus de la chimie verte et utilisés en boucle fermée. La valorisation du silicium à l'issu d'un tel procédé fait encore aujourd'hui l'objet de recherches.

METHODE C2: PURIFICATION DU VERRE, SEPARATION DE L'ENCAPSULANT

Les procédés de purification du verre pour les technologies cristallines sont identiques à ceux de séparation des métaux stratégiques et semi-conducteurs (procédés mécaniques). Ils ne seront donc pas détaillés car les performances sont les mêmes (*B2* et *C2* équivalents).

A l'issue de cette étape, les calcins de verre pourront finalement être acheminés vers un recycleur de verre. La qualité des calcins de verre détermine le type d'application potentielle du verre après recyclage.

2. ETUDES DES TECHNOLOGIES POUR LES MODULES EN COUCHES MINCES

CM

Le démantèlement des modules en couche minces est une étape moins critique de par l'absence du cadre en aluminium pour la plupart des technologies. Il peut être manuel, dans le cadre de procédés pilotes à échelle limitée, ou absent dans le cadre de procédé suivant la *Méthode 2* où les éléments habituellement séparés au stade du démantèlement sont séparés en aval du procédé de broyage.

METHODE B1: DELAMINAGE ET SEPARATION DU VERRE

Cette étape consiste à séparer et purifier le verre des métaux et autres potentiels polluants, tout en facilitant la séparation et purification avale des métaux (qui peut se révéler très onéreuse lorsque tous les métaux stratégiques sont mélangés ou fortement dilués, par exemple). Les critères clés de cette étape sont la qualité du verre obtenue (capacité de dépollution du procédé) et la sensibilité aux différents types de technologie photovoltaïques. En effet, la plupart des procédés utilisés pour cette étape sont spécifiques à un type de technologies en couches minces (CdTe ou CIGS ou a-Si) ou encore aux modules issus d'un seul et unique producteur. Cette limite technologique est encore le sujet de nombreux programmes de recherche.

B1	Méthode	Méthode de délaminage pour les couches minces				
Nature du procédé	Détails	Maturité	Forces	Faiblesses	Exemples d'utilisateur	
Procédé	Acide chlorhydrique à 15% à température ambiante	Pilote fonction- nel	 Taux de recyclage du verre élevé Peu coûteux Peu de sensibilité au type de module 	 Temps de séjour important Impact environnemental pas encore maîtrisé 	Loser Chemie	
Chimique	Décapant utilisé en boucle fermée filtrée en continue	Pilote fonctionn el	 Décapant réutilisable indéfiniment Faible sensibilité au type de module Pureté élevée des fractions séparées 	 Temps de séjour important Impact environnemental pas encore maîtrisé Manipulation des modules nécessaire 	Saperatec	

B1	Méthode	Méthode de délaminage pour les couches minces					
Nature du procédé	Détails	Maturité	Forces	Faiblesses	Exemples d'utilisateur		
Procédé physique - laser	Laser optique	R&D	 Investissement initial faible Voie sèche Pureté élevée des fractions séparées 	 Industrialisation difficile Maîtrise des effluents gazeux difficile Pas adapté aux modules brisés Sensibilité au type de module inconnue 	Jenoptik		
Procédé Electrochi mique	Application d'un courant électrique dans une solution électrolyte	R&D - arrêté	 Pas de manipulation manuelle Peu coûteux Produits utilisés en boucle fermée 	 Industrialisation complexe, bien que potentiellement réalisable (d'après Interphases Research) 	Interphases Research		
Procédé thermique	Séparation continue dans four à membrane	R&D - arrêté	 Récupération du CdTe quasi pur par voie gazeuse 	 Difficilement applicable aux modules en fin de vie car ne prévoit pas de solution à la séparation de l'encapsulant Risques d'effluents gazeux toxiques 	Primestar Solar Inc		

Tableau 43 - Délaminage et séparation du verre, couches minces (B1)

Il existe une large variété de solutions de séparation du verre pour les modules en couches minces. En effet, la qualité des semi-conducteurs de couches minces est moins sujette à se dégrader que le silicium cristallin (pas de sensibilité aux températures élevées ni aux décapants corrosifs). Parmi le panel de solutions proposées, le **procédé électrochimique** montre un ensemble convaincant d'avantages. Cependant les recherches sur ces technologies n'ont pas été continuées par manque de financements.

Les **procédés chimiques** de corrosion par un acide spécifique ou de lixiviation des métaux stratégiques sont les plus matures et employés dans la plupart des pilotes en développement actuellement. Les différents procédés chimiques se différencient par la nature des produits chimiques utilisés, le temps de séjour des modules en fin de vie dans le réacteur et la possibilité de réutiliser les produits chimiques en boucle fermée. La principale limite de ces procédés chimiques est que la purification en aval des métaux stratégiques séparés est souvent très complexe (présentant des OPEX et CAPEX élevés), et donc nécessairement sous-traitée à des centres spécialisés.

METHODE C1: SEPARATION ET RETRAITEMENT DES SEMI-CONDUCTEURS

Les enjeux de cette étape de séparation sont de séparer sélectivement les différents métaux stratégiques afin de faciliter leur retraitement et purification avale. L'étape de purification des différents métaux stratégiques est incluse ou non, selon les procédés.

La séparation et la purification des semi-conducteurs sont des points clés de la rentabilité du procédé de recyclage établi. Les semi-conducteurs étant dans des proportions infimes, les procédés doivent être adaptés à des fortes dilutions (par voie sèche ou humide). Encore une fois, l'adaptabilité des procédés de purification à un large éventail de métaux stratégiques est un élément clé pour garantir sa pérennité.

Il est important de noter que ces procédés sont généralement appliqués aux produits du délaminage aval (B1) en synergie avec les déchets issus de la production des mêmes types de modules.

C1	Méthode de séparation pour les technologies en couches minces				
Nature du procédé	Détails	Maturité	Forces	Faiblesses	Exemples d'utilisateur
Procédé Chimique	Lixiviation spécifique à chacun des métaux	Commer cial / Pilote	 Séparation spécifique des métaux stratégiques à un niveau de pureté >5N 	 Procédé sensible au type de module intrant (rendement variable selon les fabricants des modules) Consommation de produits chimiques élevée 	5N Plus, Loser Chemie
Procédé mécanique	Régénérati on d'une membrane en séparant CdTe condensé par agitation	R&D arrêté	Pas d'effluents contaminésCdTe non-dilué	Mise en œuvre automatisée nécessaire car manipulation dangereuse des membranes chargées	Primestar Solar Inc
Procédés	Application d'un courant électrique dans une solution électrolyte	R&D - arrêté	 Produits utilisés en boucle fermée Réutilisation des semi-conducteurs directement pour la production d'une nouvelle cellule 		Interphases Research, NEDO
Electrochimi ques	Utilisation de solutions électrolyte de chimie verte	Pilote en cours d'élabora tion	 Impact environnemental limité Séparation sélective et traitement de l'ensemble des métaux présents Possibilité d'adapter le procédé à un panel varié de métaux 		Recupyl
Procédé hydrométallu rgique		R&D		Consommation d'électricité	Drinkard Metalox

Tableau 44 - Séparation semi-conducteurs, couches minces (C1)

Alors que la technique de **lixiviation** des métaux stratégiques contenus dans les couches minces est la plus mature et la plus utilisée dans les installations à échelle industrielle, elle est limitée par le fait que l'ensemble des métaux stratégiques sont extrêmement dilués dans des produits chimiques qui les captent sélectivement. La récupération et le retraitement des métaux très dilués peuvent s'avérer coûteux ou peu performant de par la complexité de sa mise en œuvre (nécessité de surfaces d'échanges optimales). Par ailleurs, le **procédé électrochimique** développé par Interphases Solar (puis Recupyl) permet au contraire la récupération directe sous forme solide et sur un nouveau substrat de verre des métaux stratégiques.

METHODE B2: SEPARATION DES SEMI-CONDUCTEURS ET METALLISEURS

Rappel : la phase B2 a lieu en aval du démantèlement et du broyage du module photovoltaïque. Elle a donc pour spécificité de traiter des broyats.

Les principaux enjeux de cette deuxième étape de retraitement des modules photovoltaïques broyés (*Méthode 2*) sont les mêmes que celui de la phase C1 (*Méthode 1*) :

- Séparation sélective des métaux pour faciliter leur purification avale
- Séparation d'une quantité maximale de métaux et semi-conducteurs pour réduire le taux d'impureté du verre et des eaux de rinçage

B2	Méthode	СМ			
Nature du procédé	Détails	Maturit é	Forces	Faiblesses	Exemples d'utilisateur
Lixiviatio	Lixiviation	Com- mercial	 Taux de recyclage élevé Temps de séjour limité Séparation simultanée de l'encapsulant (dans le cas de Loser Chemie) 	 Retraitement hydro métallurgique complexe nécessaire en aval Consommation importante d'acide sulfurique 	First Solar, PV Recycling (prévisionnel: Loser Chemie)
Procédé chimique	Réduction de la tension inter-faciale entre les couches	Pilote en phase de test	 Séparation simultanée des métaux stratégiques et de l'encapsulant Soutirage continu du liquide et régénération après filtration 	 Impact environnemental non évalué Séparation non spécifique et en milieu liquide des métaux stratégiques 	Saperatec
	Attrition	R&D	Consommation d'énergie réduite par rapport au procédé de broyage	 Consommation d'abrasifs en continu Génération d'effluents solides et liquides 	Resolved Project, Calyxo
Procédé mécanique	Criblage, cyclonage	R&D en cours	 Procédée par voie sèche Capacité possible élevée 	 Ensemble des métaux captés indistinctement Retraitement des effluents gazeux nécessaire 	Recupyl
Procédé thermique	Evaporation des métaux à 450°C (gaz concentré en chlore et en azote) puis condensation fractionnée	R&D - arrêté	 Traitement par voie sèche Séparation sélective des métaux stratégiques par condensation fractionnée 	 Consommation énergétique importante Investissement initial important Gestion des effluents gazeux toxiques coûteuse 	Antec Solar

Tableau 45 - Séparation semi-conducteurs, couches minces (B2)

Cette étape de séparation des métaux stratégiques du broyat de modules a fait l'objet de nombreuses recherches. La séparation par **lixiviation** est de loin le procédé le plus utilisé et le plus mature. Une diversité importante de solutions de lixiviation et des technologies spécifiques, à l'échelle industrielle,

ont été développées, notamment par First Solar et Loser Chemie. Les procédés de lixiviation peuvent être comparés sur les critères suivants :

- quantités de produits chimiques consommées et possibilité de réutilisation des produits en boucle fermée.
- capacité à séparer sélectivement les différents métaux et à simplifier leur purification avale,
- sensibilité aux différents types de modules, natures d'encapsulant, et mode de diffusion des semi-conducteurs dans le substrat de verre.

Les principales limites de ce procédé ont trait à l'impact environnemental important (par la génération d'une solution de lixiviation, d'eaux de rinçage et d'un gâteau de filtre plus ou moins contaminés par les métaux stratégiques) et la performance variable selon le fabricant du module recyclé. Les autres procédés mécaniques et chimiques qui permettent de résoudre ces problèmes sont encore en phase de développement.

METHODE C2: PURIFICATION DU VERRE, SEPARATION DE L'ENCAPSULANT

Les enjeux de cette phase sont la purification du verre de toutes les impuretés hydrocarbonées.

C2	Méthode de séparation des impuretés du verre pour les technologies en couches minces				
Nature du procédé	Détails	Maturité	Forces	Faiblesses	Exemple d'utilisateur
Procédé thermique	Pyrolyse des éléments hydro- carbonés	R&D	• Rendement élevé	 Pas de valorisation des composés hydrocarbonés Emissions de gaz toxiques Investissement initial élevé 	Antec Solar
Procédé mécanique	Tamis vibratoire et filtre à bande sous vide	Comme rcial	 Taux de recyclage élevé Pas d'utilisation de décapants, impact environnemental limité 	 Investissement initial élevé 	First Solar Recupyl
Procédé chimique	Cf – B1	Pilote	Cf – B1	Cf – B1	Loser Chemie Saperatec

Tableau 46 - Séparation semi-conducteurs, couches minces (C2)

Cette étape de séparation du verre et de l'encapsulant dépend directement de la taille des particules broyées et de la capacité du procédé de séparation des semi-conducteurs amont à faire double-emploi pour la séparation de l'encapsulant aussi.

Dans le cas des couches minces, le **procédé thermique** est à éviter, en-dehors du cas de Antec Solar dont le procédé est basé sur la condensation sélective des métaux stratégiques, pour limiter les risques d'émission de gaz toxiques. Le **procédé mécanique** est optimum mais applicable à condition que le broyage amont soit adapté et suffisamment fin pour casser les liaisons verre-encapsulant.

COMPARAISONS DES METHODES ET CONCLUSIONS

Le Tableau 47 résume l'ensemble des procédés développés pour chacune des étapes détaillées dans la partie précédente.

Note: les procédés notés en gras sont les plus matures pour une étape donnée.

Technologie	Etape	Méthode 1	Méthode 2
c-Si	В	Procédé thermique	Procédé mécanique
		Procédé chimique	Procédé chimique
Cristallin		Procédé chimique	
	С	Procédé électro-chimique	Donnée non disponible
		Procédé thermique	
СМ		Procédé chimique	
		Procédé physique - laser	
	В	Procédé électro-chimique	Procédé chimique
		Procédé thermique	
Couches		Procédé confidentiel de REVATECH	
Minces		Procédé chimique	Drogé dé mé conique
	С	Procédé mécanique	Procédé mécanique
	C	Procédé électro-chimique	Drogádá thomaigue
		Procédé hydro-métallurgique	Procédé thermique

Tableau 47 - Procédés développés pour chacune des étapes et méthodes

Le Tableau 48 compare les deux méthodes pour chacun des types de technologie. La comparaison est basée sur trois principaux facteurs, choisis pour leur pertinence dans un contexte actuel de gisement limité, et pour une filière en phase de développement.

	Méthode 1	Méthode 2
	Maturité Procédés maîtrisés et matures à échelle industrielle R&D peu dynamique	Maturité En cours de développement / optimisation
Cristallin <mark>c-Si</mark>	Performance Meilleur recyclage ou valorisation des métaux et semi-conducteurs Bonne qualité du verre	Performance Valorisation des métaux et semi- conducteurs moins systématique Qualité du verre limitée
	Capacité Adaptable à toute échelle	Capacité Adapté pour une capacité élevée, échelle industrielle principalement
	Matricitá	Maturité
	Maturité En cours développement / commercialisation R&D dynamique	Procédés matures à échelle industrielle, recherches en cours d'optimisation et de nouveaux procédés
Couches Minces	Performance Bon recyclage ou valorisation des métaux et semi-conducteurs Bonne qualité du verre	Performance Recyclage / valorisation des métaux stratégiques complexe et coûteux Bonne qualité du verre Investissements initiaux élevés
O.II.	Capacité Non adaptable à l'échelle industrielle. Pour industrialisation, transition vers la méthode 2 nécessaire	Capacité Adapté pour une capacité élevée, échelle industrielle principalement

Tableau 48 - Comparaison synthétique des deux méthodes

Conclusions

Couches minces

Le recyclage d'un module en couches minces à échelle industrielle semble faisable de manière économiquement viable si ce dernier est broyé en amont des étapes de séparation. En effet, le broyage amont permet de remplacer les manutentions des modules par un transport plus automatisé, de rentabiliser des installations à fort CAPEX grâce au retraitement de volumes importants ainsi que d'homogénéiser les flux de déchets provenant potentiellement de sources variées. Cependant, comme montré ci-après, l'échelle industrielle n'est pas nécessairement l'échelle optimum de rentabilité des activités de recyclage.

Aux défis technologiques qu'impose le traitement d'infimes quantités de métaux stratégiques s'ajoutent les contraintes réglementaires (RoHS et REACH en Europe) sur les métaux dangereux. Les doses d'impuretés dans le verre et dans les effluents liquides ou solides étant régulées, le principal objectif du recyclage des couches minces est d'optimiser les coûts encore aujourd'hui très élevés et de limiter les impacts environnementaux.

Technologies cristallines

A contrario, la principale limite du recyclage des modules cristallins rencontrée aujourd'hui est d'ordre économique, la séparation et valorisation du silicium de manière rentable restant un défi. En effet, le peu d'acteurs ayant réussi à séparer le silicium ne peuvent rentabiliser l'activité de purification du silicium (pour son recyclage dans l'industrie photovoltaïque). Les projets présentent généralement un CAPEX relativement faible et des OPEX élevés. Bien que les quantités de modules cristallins à disposition soient plus élevées, le nombre de projets de recherche et de développement de pilotes reste limité comparé à l'activité générée pour le recyclage des couches minces. La rentabilité d'une installation de recyclage des technologies cristallines pourrait s'améliorer avec le développement des technologies permettant la récupération de l'argent et la valorisation des wafers.

De plus, la synergie avec les déchets issus de la production étant moins évidente et à faible valeur ajoutée, le développement de nouvelles technologies ne bénéficie pas de cette opportunité.

Méthode 1 vs Méthode 2

La tendance observée jusqu'à aujourd'hui est le développement de technologies innovantes par le biais de la méthode 1 puis le développement à l'échelle industrielle de ces mêmes technologies en suivant la méthode 2.

Limites : évolutions des technologies

Les technologies de modules photovoltaïques étant en constante évolution (composition, méthode de fabrication, épaisseur des semi-conducteurs, composants variés, taille, etc...), l'industrie du recyclage doit pouvoir s'adapter au fur et à mesure à ces variations technologiques. Dans ce contexte, la sensibilité des procédés aux types de modules est un facteur déterminant de viabilité économique. Par ailleurs, des centres de recherche travaillant au développement de modules photovoltaïques recyclables, l'émergence sur le marché de ce type de technologies est aussi à prévoir dans les années à venir, avec à la clé des conséquences sur la fabrication même des modules.

L'évolution des technologies montrent aujourd'hui plusieurs orientations :

- dans le sens d'une complexification, pour l'augmentation des rendements et la réduction des coûts de production,
- dans le sens de l'intégration des besoins du recyclage dans la phase de conception du panneau. Cette approche intégrée « du berceau à la tombe » de la conception fait l'objet de nombreuses recherches et pourraient aboutir à plus long terme à faire émerger des bonnes pratiques permettant de faciliter le recyclage des PV. L'INERIS et Auversun notamment travaillent à l'élaboration d'un module photovoltaïque recyclable. Le point d'attention principal de ces programmes de R&D concerne la modification ou le remplacement de l'encapsulant. La directive DEEE incluant dans son champ d'application la prise en compte de l'ensemble du cycle de vie dans la conception du produit, une intensification des évolutions de cette orientation est prévisible.

5.4 Comparaison des acteurs

SOLUTIONS DE RECYCLAGE AUJOURD'HUI ADOPTEES PAR LES PRODUCTEURS

Les différentes solutions adoptées aujourd'hui par les producteurs sont :

- adhésion et point de collecte PV CYCLE ;
- adhésion à PV CYCLE ;
- adhésion au CERES;
- pas de programme de recyclage ;
- programme privé dans le cadre d'un système individuel établi directement avec un partenaire de recyclage.

En Europe, on observe en 2012 que la majorité des producteurs sont adhérents du programme de recyclage PV CYCLE.

A titre d'illustration, les producteurs cités dans le Tableau 49, présents au salon Be+ tenu à Paris en avril 2012, se positionnaient de la manière suivante quant au recyclage des PV :

Nom du producteur	Programme de recyclage	Solution de recyclage en avril 2012	Commentaire
Bauer		PV CYCLE	
Bisol		CERES	
ET		PV CYCLE	
France Micromorphe	Non		Pas de filière de recyclage spécifique, car micro- morphe recyclable comme le verre des bâtiments compte tenu de la faible teneur en silicium
GDF Suez		PV CYCLE	
Helios		PV CYCLE	
International ABCD	Non		
Isofoton		PV CYCLE	Un des membres fondateurs de PV Cycle
Jetion Solar		PV CYCLE	
JS Solar		PV CYCLE	
Korax Solar		PV CYCLE	
Krannich		PV CYCLE	
LKD		PV CYCLE	Recycle ses propres déchets issus de la production, possibilité d'intégrer aussi le recyclage des modules en fin de vie
Siliken		PV CYCLE	
SNA Solar		CERES	
Solar Fabrik	Non	Contrat privé	Ré-adhésion à PV CYCLE si amélioration de la qualité de leurs prestations. Aujourd'hui, assure le recyclage grâce à un partenariat privé avec un recycleur
Solarezo		PV CYCLE	
Sovello		PV CYCLE	
Tournaire		CERES	
Ulica Solar		PV CYCLE	
Voltec Solar		PV CYCLE	

Tableau 49 - Positionnement de quelques producteurs vis-à-vis du recyclage des PV

HISTORIQUE DES DIFFERENTS ACTEURS

La problématique de recyclage des modules photovoltaïques a été très vite soulevée, notamment dès le début des années 90 [1], par les utilisateurs et les distributeurs montrant une sensibilité particulière à l'impact environnemental de leur investissement. La prise de conscience de l'impact environnemental du module photovoltaïque en tant que déchet et les faibles quantités de modules en fin de vie sur le marché ont d'abord amené à une réflexion d'intégration du traitement des modules aux filières existantes.

Dans un second temps, les producteurs de modules photovoltaïques ont acquis une expertise sur les possibilités de recyclage de leurs déchets issus de la production, puis pour certains de leurs propres modules.

A long terme, il ne semble cependant pas économiquement viable de bâtir des systèmes de recyclage spécifiques aux propres produits de chaque fabricant, faut de bénéficier alors d'économies d'échelle. Les acteurs du recyclage, forts de leur expertise technique, ont montré un intérêt particulier pour le sujet, mais restent frileux pour investir dans des technologies spécialisées et préfèrent adapter leurs propres lignes de recyclage aux modules photovoltaïques.

Aujourd'hui, on observe le développement de nouvelles entreprises spécialisées dans le délaminage des modules reposant sur une technologie innovante. Ces acteurs sont en phase de développement de leur technologie et sont limités à des capacités faibles, face aux quantités réduites de modules en fin de vie disponibles, mais peuvent potentiellement devenir des acteurs clés de la filière.

En parallèle, un quatrième type d'acteur émerge sur ce marché du recyclage. Il se caractérise par une expertise dans un domaine spécifique de retraitement de produits de la chaîne de valeur du module photovoltaïque. Généralement basé sur le recyclage des déchets issus de la production de modules (ou autres), il intègre alors l'étape de démantèlement et de délaminage du module, permettant la récupération dans un état optimum du produit d'intérêt.

CARTOGRAPHIE ET CARACTERISATION DES TYPES D'ACTEURS

ACTEURS DU RECYCLAGE

Le Tableau 50 liste les différentes classes de recycleurs, différenciées selon leur cœur de métier d'origine, et permet d'évaluer les forces et faiblesses inhérentes au cœur de métier de chaque acteur au moment de son début d'activité dans le secteur du recyclage des modules photovoltaïques.

Observation et comparaison

Alors que les recycleurs, à l'origine producteurs de modules photovoltaïques, bénéficient de nombreux avantages, ce ne sont pas eux qui semblent aujourd'hui le plus à même d'investir dans la filière, en vue du contexte économique actuel du marché européen notamment.

Les recycleurs dont le cœur de métier est le recyclage de déchets d'une filière connexe, de par leur expérience et leurs installations préexistantes pouvant être en synergie avec le recyclage des PV, sont aujourd'hui en tête des projets de recherche les plus innovants et sont en mesure de réduire le CAPEX de leur projet en utilisant leurs installations existantes tout en s'assurant des volumes de déchets issus de filière connexes constants.

Les recycleurs forts d'une expertise scientifique spécifique, et à l'initiative du développement de nouveaux procédés indépendants de toute filière de recyclage, montrent une certaine méfiance à investir pour les quelques années à venir, face à la difficulté majeure de capter des flux de modules en fin de vie.

Activité d'origine / cœur de métier	Forces	Faiblesses	Exemples d'acteurs concernés
Recycleur initialement producteur de modules PV	Stratégie de récupération des matières premières pour la production à coût quasi nul Synergie directe avec les déchets issus de la production Réduction importante des coûts de transport Réseau d'industriels du PV	Pas/peu de compétences sur les technologies de recyclage Pas d'expérience en termes de collecte et redistribution des produits	Solar World, First Solar, Primestar Solar, Antec Solar, Soltech& Seghers, Pilkington Solar, CP Solar, Solar Frontiere, Calyxo
Recycleur initialement producteur d'un produit autre qui requiert des matières premières contenues dans les modules PV	Stratégie de recycler un des composants du module pour l'utiliser comme matière première pour la production à coût quasi nul Réseau d'industriels du PV	Pas/peu de compétences sur les technologies de recyclage Pas d'expérience en termes de collecte et redistribution des produits Doit intégrer la filière de purification du composant récupéré sur les modules	Loser Chemie, Targray
Recycleur initialement chargé du prétraitement de matières premières de modules PV	Synergie entre les composants récupérés des modules en fin de vie et les déchets issus du prétraitement des matières premières	Pas/peu de compétences sur les technologies de recyclage Pas d'expérience en termes de collecte et redistribution des produits Doit intégrer la filière de purification du composant récupéré sur les modules	Arena Technologies, Poseidon Solar, 5N Plus, SGS Minerals
Recycleur initialement recycleur de déchets spécifiques similaires aux modules PV (filières de recyclage connexes)	Compétences et expérience en recyclage Réseau de collecte et système logistique déjà établis Vente groupées des produits issus du recyclage des déchets équivalents conduit à des volumes plus importants	Risque de faible adaptabilité des modules PV à la chaîne de recyclage actuelle Pas de connaissance sur la technologie des modules PV	REVATECH, Recupyl, Maltha, Reiling
Recycleur initialement recycleur de DEEE qui étend son catalogue de produits acceptés	Compétences et expérience en recyclage Installations conformes aux exigences DEEE Synergie avec les autres DEEE du recyclage des métaux précieux ou stratégiques qui peut rendre l'activité rentable Réseau de collecte, système logistique et moyens de communication déjà établis	Risque de faible adaptabilité des modules PV à la chaîne de recyclage actuelle Pas de connaissance sur la technologie des modules PV Perte dans la qualité de recyclage en mélangeant différents types de déchets dans un même flux de collecte	ECS Refining
Expert scientifique dont le domaine est commun à celui du procédé de recyclage	Compétence technique forte/spécialiste sur une étape du procédé	Pas de connaissances sur la technologie des modules PV Pas de valorisation directe possible des produits du recyclage Pas/peu de compétences sur les technologies de recyclage Pas d'expérience en termes de collecte et redistribution des produits	Drinkard Metalox, Saperatec, PV Recycling (Encros), Photocycle, Jenoptik GmbH

Tableau 50 - Liste des types d'acteurs du recyclage des modules photovoltaïques selon leur coeur de métier d'origine

Conclusion

Ces dix dernières années montrent une diversification importante des acteurs participant au développement de cette filière.

Aujourd hui, seules quelques entreprises représentent chacune des classes d'acteurs. Cependant, cela montre aussi que l'ensemble des entreprises de chacun de ces profils sont de potentiels acteurs du recyclage dans un avenir proche.

ACTEURS DE LA MISE EN PLACE DE LA FILIERE

Modèles de financement des coûts de la collecte et du recyclage actuels

Aujourd'hui, plusieurs modèles de financement de la collecte coexistent dans le Monde:

N°	Description du modèle	Exemple d'acteur mettant en œuvre ce modèle
MC1	Producteur payeur à 100%	First Solar, Calyxo
MC2	Recycleur payeur à 100% pour des quantités >100 kWc, utilisateur payeur jusqu'au point de collecte uniquement puis recycleur payeur sinon	CERES
мсз	Producteur payeur à 100% pour des quantités >40 modules, utilisateur payeur jusqu'au point de collecte puis producteur payeur sinon	PV CYCLE
MC4	4 Utilisateur payeur à 100% PV Recycling, producteur n'ayant pas de programme de recyclage	
MC5	Utilisateur payeur jusqu'au point de collecte, producteur payeur du point de collecte jusqu'au centre de retraitement	Eco-organisme DEEE (prévisionnel en vue de l'amendement de la DEEE)
MC6	Utilisateur payeur jusqu'au centre de retraitement	Autre

Tableau 51 - Modèles de financement de la collecte

Alors que le modèle MC5 cible les déchets ménagers dans l'ensemble des pays soumis à la directive DEEE (après la mise en application de l'inclusion des PV dans la DEEE), le modèle américain (MC4) suit une logique de marché où le recyclage est perçu comme un service (et l'utilisateur comme un client).

De même, plusieurs modèles de financement du recyclage coexistent dans le Monde:

N°	Description du modèle	Exemple d'acteur mettant en œuvre ce modèle
MR1	Recycleur payeur	CERES
MR2	Producteur payeur via un système de provisions systématiques	Producteur indépendant de tout organisme, ayant un système individuel de recyclage (First Solar, Calyxo)
MR3	Producteur payeur via un système de cotisation à un organisme externe PV CYCLE, les éco-organismes (prévisionnel en vue de l'amendement de la DEEE)	
MR4	Utilisateur payeur	PV Recycling, producteur n'ayant pas de programme de recyclage

Tableau 52 - Modèles de financement du recyclage

Les modèles MR2 et MR3 visent une application pour les déchets ménagers au moins dans l'ensemble des pays soumis à la directive DEEE (après la mise en application de l'inclusion des PV dans la DEEE).

5.5 Capacité de recyclage et gisement de déchets

Le faible gisement actuel et prévisionnel de modules en fin de vie ainsi que la répartition du gisement entre plusieurs acteurs concurrents mènent à adopter une certaine prudence à l'investissement et freinent la mise en œuvre de projets de procédés automatisés à échelle industrielle principalement. On observe donc une majorité des projets actuellement en cours au stade de recherche et des projets pilotes en attente d'un gisement de déchets suffisant pour monter en capacité.

Au total, 46 projets ont été répertoriés au cours de cette étude, présentant des niveaux de maturité et états d'avancement variés. Leur répartition par types de technologie traitée et par niveau de maturité est fournie dans le Tableau 53.

Nombre d'acteurs	Étiquettes de co🔼				
Étiquettes de lignes	<u></u> Arrêté	En cours	Prospectif	Non disponible	Total général
■Industrielle		7	7		14
CM		4	2		6
c-Si		3	4		7
c-Si + CM			1		1
■ Pilote	2	5	4		11
CM		2	3		5
c-Si	2		1		3
c-Si + CM		2			2
Non disponible		1			1
■R&D	11	9		1	21
CM	6	6		1	13
c-Si	4	3			7
c-Si + CM	1				1
Total général	13	21	11	1	46

Tableau 53 - Répartition des projets de recyclage PV identifiés par RECORD / ENEA Consulting

REPARTITION GEOGRAPHIQUE

Le recensement, aussi exhaustif que possible, des procédés actuels de recyclage en développement est résumé sur les planisphères ci-après pour l'année 2012 et l'année 2020. Ils mettent en exergue le dynamisme européen sur ces activités de recyclage, a fortiori en 2012.

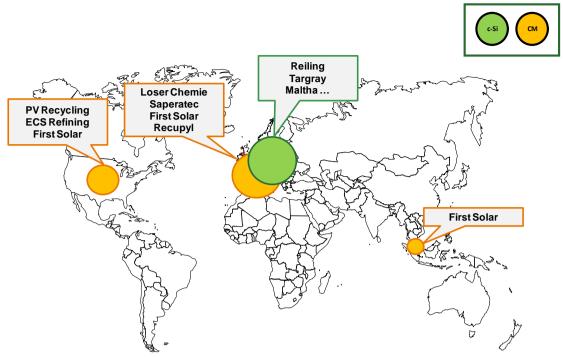


Figure 91 - Planisphère représentant l'ensemble des unités de recyclage installées en 2012 (pilotes et industrielles) identifiées par RECORD / ENEA Consulting

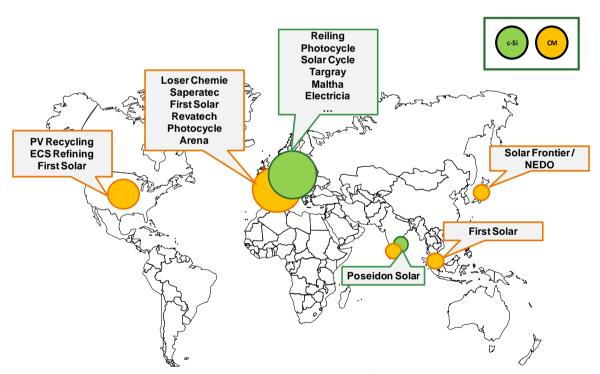


Figure 92 - Planisphère représentant l'ensemble des unités de recyclage pressenties en 2020 (pilotes et industrielles) identifiées par RECORD / ENEA Consulting

Notes:

- La taille des points représente le nombre d'acteurs actifs dans une région donnée.
- Les prévisions 2020 montrent le nombre d'acteurs minimum prévus. Sont cités uniquement les recycleurs de modules photovoltaïques déjà actifs aujourd'hui et ayant prévu de développer leurs activités à long terme. Il est donc très probable qu'un réseau plus large d'acteurs sera réellement établi. Ces données fournissent une projection minimaliste de la situation en 2020.

La Figure 91 représente l'ensemble des installations mises en service, fin 2012, à l'échelle pilote ou industrielle. On observe une large concentration des activités de recyclage en Europe à ce jour. Puis une décentralisation progressive des activités est constatée, comme le montre le planisphère en 2020 (Figure 92), où l'Inde, le Japon et la Malaisie se positionnent sur le marché des déchets photovoltaïques.

En Europe

Alors que PV CYCLE développe activement un réseau de recycleurs aptes à traiter des modules en fin vie de manière efficiente (5 recycleurs sont dès aujourd'hui en passe de maîtriser leurs performances sur des modules PV), d'autres entrepreneurs indépendants industrialisent leur procédé pilote, et des centres de recherche investissent massivement pour la mise en œuvre d'unités industrielles à long terme.

De plus, dans le contexte actuel où d'importantes recherches ont abouti à des résultats satisfaisant l'ensemble des réglementations et des conditions de rentabilité, le point de vue des experts de procédés opérationnels (First Solar et Solar Cycle par exemple) serait de diffuser leur procédé, par le biais de licences, à de nombreux autres acteurs.

L'ensemble de ces phénomènes amènent à une diversification importante des acteurs actifs dans la filière de recyclage des modules photovoltaïques d'ici 2020.

On note que les recycleurs de modules en couches minces sont géographiquement centrés autour de l'Allemagne (pour ce qui est de l'Europe). Il est à prévoir que le nombre de recycleurs de modules en couches minces sera sensiblement équivalent à celui des recycleurs de modules cristallins, malgré les différences importantes de volumes des gisements respectifs. En effet, les capacités des installations pour les couches minces sont généralement limitées en capacité, bénéficient de la synergie possible avec les gisements de débris issus de la production et enfin peuvent rentabiliser leur activité avec de plus faibles volumes, en raison de la valeur des métaux stratégiques.

La Figure 93 et la Figure 94 renseignent sur les installations prévisionnelles, en Europe, à horizon 2020, respectivement pour le recyclage de modules cristallins et en couches minces. Les capacités massiques prévisionnelles sont basées sur les informations recueillies auprès des différents acteurs, tout en supposant, par défaut et quand l'information de taux de charge n'est pas disponible, un fonctionnement 10 heures par jour et 300 jours par an. Ces deux figures ne prétendent aucunement à l'exhaustivité : Les installations pour lesquelles trop de données étaient incertaines ou inconnues ne sont pas indiquées.

En conséquence, la Figure 93 et la Figure 94 ont tendance à être conservatives quant aux capacités prévisionnelles de recyclage de modules PV à horizon 2020.

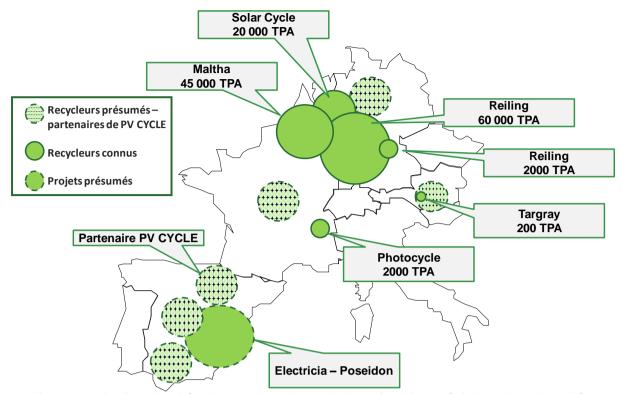


Figure 93 - Projets d'unités de recyclage de modules cristallins prévisionnels et installés (pilotes et industriels) en 2020

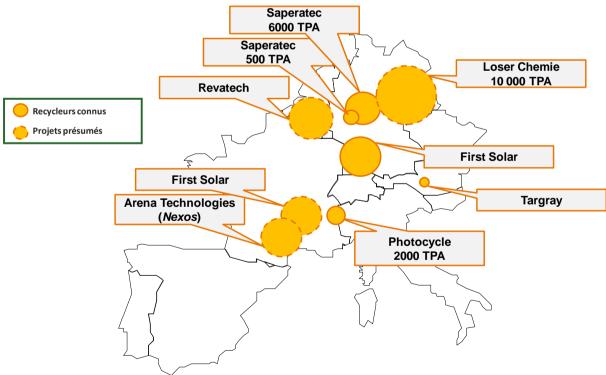


Figure 94 - Projets d'unités de recyclage de modules en couches minces prévisionnels et installés (pilotes et industriels) en 2020

COMPARAISON DES CAPACITES AVEC LE GISEMENT DE DECHETS

Le présent paragraphe vise à renseigner sur les tendances actuelles et prévisionnelles quant au taux d'utilisation des capacités de recyclage installées. Ce taux est représentatif d'une sur- ou sous-capacité, compte tenu des gisements de déchets disponibles.

Le taux d'utilisation des capacités de recyclage pour le recyclage de modules en fin de vie est aujourd'hui difficile à évaluer de par sa variabilité selon les centres de retraitement. Cependant, des retours d'expériences de recycleurs actuels présentant une capacité relativement importante (supérieure à 2 tonnes par jour) indiquent un manque chronique de déchets photovoltaïques (Loser Chemie, First Solar, Reiling, Maltha, Solar World).

Depuis les années 2000, nombre d'entreprises variées ont développé une capacité à recycler les modules photovoltaïques. La comparaison de la capacité prévisionnelle de recyclage, basée sur les témoignages de l'ensemble des acteurs du recyclage, avec les quantités prévisionnelles de déchets photovoltaïques fait ainsi ressortir une tendance à la surcapacité. Les principales hypothèses qui sous-tendent ce constat de surcapacité sont :

- Les capacités annoncées par les recycleurs potentiels
- Un fonctionnement, à défaut d'information plus précise, 10 heures par jour et 300 jours par an
- L'exclusion des installations dont les données sont jugées trop incertaines
- La non prise en compte d'installations futures, opérationnelles en 2020, et non encore connues à ce jour

Ce phénomène globalisé de surcapacité est à prévoir jusqu'à l'augmentation significative du gisement en 2035, selon les hypothèses décrites précédemment (et notamment directement conditionnée par l'hypothèse d'une durée de vie des panneaux de 25 ans).

Modules cristallins

La surcapacité des installations de recyclage des modules cristallins découle directement du fait que l'ordre de grandeur des capacités de recyclage des procédés de recyclage du verre est disproportionné par rapport au gisement de modules en fin de vie. Cette disproportion est tempérée par un taux d'utilisation des procédés de recyclage extrêmement faible, lié au manque de flux de déchets. En dehors des procédés pilotes dont la capacité est limitée (Saperatec, Recupyl...), la tendance générale dans l'organisation des recycleurs est de recycler ponctuellement par lots des stocks de modules en fin de vie.

La filière de recyclage des modules cristallins montre une surcapacité potentielle actuelle et prévisionnelle très importante. Ce phénomène est spécifique et directement lié à la synergie avec la filière de recyclage du verre.

Le phénomène de surcapacité de recyclage de la filière cristalline en synergie avec la filière du verre ne désavantage pas les centres de retraitement, et favorise l'optimisation des coûts logistiques de transport via la mise en place d'un réseau européen dense de centres de retraitement.

Modules en couches minces

La surcapacité des installations de recyclage des modules en couches minces, confirmée par les témoignages récents de centres de retraitement, pourrait s'avérer à plus long terme être un frein aux performances de recyclage. La surcapacité étant liée aux nombres de centres de retraitement, elle traduit une diversification des acteurs et donc une division du gisement de déchets entre les différents acteurs. Les technologies de recyclage des modules en couches minces étant relativement complexes (notamment la part hydro-métallurgique de purification des métaux stratégiques), ces procédés nécessitent un taux d'utilisation optimum pour rentabiliser leur activité de recyclage. Une capacité réduite ou flexible des procédés de recyclage, ou un flux constant de déchets issus d'une filière connexe, seraient donc des atouts face à ce phénomène de surcapacité.

Conclusion générale

En résumé, la présente étude a permis de tirer les principaux enseignements suivants :

- D'un point de vue technologique, on observe encore aujourd'hui une grande diversité des technologies photovoltaïques. Ceci induit une diversité des procédés de recyclage développés et adaptés aux différentes familles photovoltaïques.
- L'évolution du marché photovoltaïque est assez incertaine. Il en résulte une grande disparité dans les scénarios d'évolution des quantités de modules PV installés, et en conséquence une grande amplitude quant au gisement de déchets PV recyclables à moyen et long terme. A titre d'illustration, les tonnages cumulés de modules PV recyclés à horizon 2045 en Europe pourraient varier de 5,3 à 8,7 millions de tonnes.
- D'un point de vue réglementaire, seules l'Europe (DEEE) et la Californie se sont dotées de lois spécifiques au retraitement des modules photovoltaïques. La transcription en France de la nouvelle révision de la DEEE, incluant les modules PV, pourrait intervenir à l'été 2014. D'une manière plus générale, la filière de recyclage des modules photovoltaïques est vouée, à long terme, à être soumise au principe de Responsabilité Elargie du Producteur.
- La question de la mise en œuvre d'une filière de recyclage spécifique pour les modules PV dans le cadre de la DEEE n'est pas encore tranchée. Elle dépend de la spécificité technologique des procédés de recyclage des modules photovoltaïques ainsi que de la volonté et capacité des producteurs à s'associer pour mettre en œuvre un éco-organisme spécifique, sous condition d'approbation par les pouvoirs publics. En tout état de cause les modes de financement et les moyens de collecte sont à optimiser pour adapter les pratiques usuelles appliquées aux DEEE actuels aux besoins spécifiques de la filière des déchets photovoltaïques.
- Quantitativement, 11 procédés de recyclage opérationnels en 2012, dont 4 pilotes et 7 procédés à échelle industrielle, complétés par 7 programmes de recherche récents, et 2 associations proposant un programme de collecte et de recyclage spécifique aux déchets photovoltaïques ont été identifiés. 11 projets pilotes et d'industrialisation de pilotes supplémentaires seraient en développement et dans l'attente d'un gisement de déchets suffisant pour être mis en œuvre avec un taux de recyclage prévisionnel compris entre 74% et près de 100%.
- Le développement récent de solutions techniques de pointe pour le recyclage des modules photovoltaïques, stimulé par les évolutions de la réglementation, laisse présager un futur favorable pour le recyclage des déchets de la filière photovoltaïque. Le succès de cette activité est en partie conditionné par la capacité des acteurs du recyclage à adapter d'une part la taille de leur installation au volume transitoire de gisement de déchets et d'autre part leur modèle économique et leur système administratif (de facturation et de traçabilité des déchets) aux besoins des partenaires et au cadre réglementaire local.
- Il convient également de noter la grande diversité, le long de la chaîne de valeur, des acteurs impliqués, ou susceptibles de l'être, dans le recyclage des modules photovoltaïques.
- Economiquement toutefois, l'activité de recyclage des modules photovoltaïques n'est à ce jour pas viable, et s'appuie sur des sources de rémunération provenant du client, du producteur du module ou d'organismes tels que PV CYCLE ou le CERES, en plus des bénéfices tirés de la vente des matières premières recyclées.
- Aux difficultés liées au gisement de déchets encore trop faible et peu maîtrisé, à l'instabilité du marché photovoltaïque et aux enjeux technologiques de recyclage des métaux stratégiques et du silicium, s'ajoute une tension concurrentielle forte, notamment due à une surcapacité de recyclage significative à horizon 2020.

Un peu plus en détail, les principales conclusions relatives au recyclage des modules sont rappelées ci-après :

Technologies cristallines

La principale limite du recyclage des modules cristallins rencontrée aujourd'hui est d'ordre économique, la séparation et valorisation du silicium de manière rentable restant un défi. En effet, le peu d'acteurs ayant réussi à séparer le silicium ne peuvent rentabiliser l'activité de purification du silicium (pour son recyclage dans l'industrie photovoltaïque). Les projets présentent généralement un CAPEX relativement faible et des OPEX élevés. Bien que les quantités de modules cristallins à disposition soient plus élevées, le nombre de projets de recherche et de développement de pilotes reste limité comparé à l'activité générée pour le recyclage des couches minces. La rentabilité d'une

installation de recyclage des technologies cristallines pourrait s'améliorer avec le développement des technologies permettant la récupération de l'argent et la valorisation des wafers.

De plus, la synergie avec les déchets issus de la production étant moins évidente que pour les couches minces et à faible valeur ajoutée, le développement de nouvelles technologies ne bénéficie pas de cette opportunité.

Couches minces

Le recyclage d'un module en couches minces à échelle industrielle semble faisable de manière économiquement viable si ce dernier est broyé en amont des étapes de séparation. En effet, le broyage amont permet de remplacer les manutentions des modules par un transport plus automatisé, de rentabiliser des installations à fort CAPEX grâce au retraitement de volumes importants ainsi que d'homogénéiser les flux de déchets provenant potentiellement de sources variées.

Aux défis technologiques qu'impose le traitement d'infimes quantités de métaux stratégiques s'ajoutent en outre les contraintes réglementaires (RoHS et REACH en Europe) sur les métaux dangereux. Les doses d'impuretés dans le verre et dans les effluents liquides ou solides étant régulées, le principal objectif du recyclage des couches minces est d'optimiser les coûts encore aujourd'hui très élevés et de limiter les impacts environnementaux.

Evolutions des technologies

Les technologies de modules photovoltaïques étant en constante évolution (composition, méthode de fabrication, épaisseur des semi-conducteurs, composants variés, taille, etc...), l'industrie du recyclage doit pouvoir s'adapter au fur et à mesure à ces variations technologiques. Dans ce contexte, la sensibilité des procédés aux types de modules est un facteur déterminant de viabilité économique. Par ailleurs, des centres de recherche travaillant au développement de modules photovoltaïques recyclables, l'émergence sur le marché de ce type de technologies est aussi à prévoir dans les années à venir, avec à la clé des conséquences sur la fabrication même des modules, avec l'inclusion de la notion d'éco-conception.

A la lumière de ces différentes conclusions, et eu égard aux difficultés de cette filière de recyclage, les recommandations suivantes peuvent au final être formulées :

- Choix du gisement : assurer un gisement stable, via un système de collecte spécifique tel qu'un programme de recyclage individuel en boucle fermée, un partenariat exclusif avec des organisations de collecte, ou en bénéficiant de la synergie avec une autre filière de recyclage (filière connexe ou déchets issus de la production).
- Choix de la technologie : privilégier un procédé faiblement sensible au type et à la qualité du module traité.
- Stratégie de limitation des investissements: utiliser des installations de recyclage déjà existantes auxquelles sont apportées quelques modifications spécifiques pour l'adaptation au recyclage des modules photovoltaïques ou en privilégiant un investissement progressif étagé:
 - o en optant pour un recyclage centralisé dans un contexte de faible gisement puis en disséminant la technologie à échelle plus réduite au fur et à mesure que le gisement augmente
 - o et/ou en négligeant le recyclage des composants faiblement concentrés ou à faible valeur ajoutée dans un contexte de gisement faible.

En attendant un contexte plus favorable, certaines stratégies d'optimisation des coûts sont envisagées. Les orientations stratégiques pour le recyclage des modules PV peuvent ainsi se baser sur les quelques postulats suivants :

- Un programme de recyclage de modules PV (mode de collecte avec les unités de recyclage associées) est a priori optimal dans un contexte local uniquement. Idéalement, le périmètre de collecte des déchets réduit au fur et à mesure que le gisement se densifie.
- Des volumes croissants de déchets permettent de déployer des technologies/modes de fonctionnement présentant de meilleures performances.
- D'une manière générale, la filière photovoltaïque présente de nombreux facteurs potentiellement très variables; la flexibilité d'une installation permet ainsi de limiter les risques associés aux investissements et d'adapter le recyclage au fur et à mesure des évolutions de la filière photovoltaïque (importance de la notion de flexibilité en termes de performances, de capacité, de modes de financement, de clientèle, de situation géographique, etc...).

Le choix de la technologie, de la qualité de recyclage (pureté des composants sortants) et de la capacité d'une installation est au final un optimum entre les trois principales variables mesurables : coûts du recyclage, besoins en ressources, et impact environnemental du procédé de recyclage.

Annexe

Liste des interviews menées par ENEA Consulting auprès des acteurs de la filière de recyclage des modules photovoltaïques

SN Plus ADEME Yvonnick Durand APESI Arena Technologies Jean-Pierre Roignant CERES Jean-Pierre Palier Drinkard Metalox Ecologic Bernard Reygnier Eco-Systèmes Richard Toffolet ERP Philippe Badou First Solar Interphases Research Jenoptik Uwe Wagner Jetion Solar Loser Chemie Maltha NEDO Junji Nishihata Poseidon Solar Primestar Solar Inc PV CYCLE Jan Clyncke PV Recycling Recupyl Recylum Xavier Lantoinette Relux Reiling Resolar Projekt Revatech Angèle Abou'ou Saperatec Solar Gycle Karsten Wambach Solar Erkart Döring SGS Minerals Alex Mezei Solar Gycrat Revalii Nencal Fessler Loser Chemie Dr. Parlitzsch Michael Fessler Loser Chemie Dr. Parlitzsch Drinkard Drinkard Drinkard Drinkard Drinkard Denis Duyrat Producteurs varies au Salon Be+ - ENR, Paris 2012	Nom de l'entreprise	Nom de la personne interrogée		
APESI Arena Technologies CERES Jean-Pierre Roignant CERES Drinkard Metalox Ecologic Bernard Reygnier Eco-Systèmes Richard Toffolet ERP Philippe Badou First Solar Interphases Research Jenoptik Jetion Solar Loser Chemie NEDO Junji Nishihata Poseidon Solar Venugopal Ramakrishnan Primestar Solar Inc PV CYCLE PV Recycling Recylum Recylum Relux Clas Ötting Reiling Resolar Projekt Revatech Sandina Siéphane Duponchel Jean-Pierre Roignant M. Drinkard M. Drinkard Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Schott Solar First Solar Andrea Wade Neroe Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Schott Solar Erkart Döring SGS Minerals Solar Frontier M. Roluf Sunvie Pierre Morane Fierre Palier Meroupotal Jean-Pierre Roignant Meroupotal Marc Uphoff / Roland Pohl Resolar Projekt Revatech Schott Solar Firkart Döring SGS Minerals Solar Cycle Karsten Wambach M. Roluf Sunvie Pierre Morane Targray Jack Bardakijian Tevali	5N Plus			
Arena Technologies CERES Jean-Pierre Roignant CERES Drinkard Metalox Ecologic Eco-Systèmes Richard Toffolet ERP Philippe Badou First Solar Interphases Research Jenoptik Jetion Solar Loser Chemie Maltha Poseidon Solar Primestar Solar Inc PV CYCLE PV Recycling Recupyl Recylum Reliux Reliux Reling Resolar Projekt Revatech Salar Resolar Projekt Revatech Schott Solar Resolar Projekt Revatech Schott Solar Schott Solar Resular Solar Projekt Resolar Projekt Resolar Projekt Resolar Projekt Resolar Frontier Schott Solar Schott Scho	ADEME	· · · · · · · · · · · · · · · · · · ·		
CERES Drinkard Metalox Brinkard Metalox Ecologic Bernard Reygnier Eco-Systèmes Richard Toffolet ERP Philippe Badou First Solar Andrea Wade Interphases Research Jenoptik Jetion Solar Loser Chemie Dr. Parlitzsch Maltha Eric Dirkx NEDO Junji Nishihata Poseidon Solar Venugopal Ramakrishnan Primestar Solar Inc PV CYCLE Jan Clyncke PV Recycling Recupyl Recylum Xavier Lantoinette Relux Relux Reling Marc Uphoff / Roland Pohl Resolar Projekt Revatech Angèle Abou'ou Saperatec Schott Solar Solar Frontier Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	APESI	Stéphane Duponchel		
CERES Drinkard Metalox Brinkard Metalox Ecologic Bernard Reygnier Eco-Systèmes Richard Toffolet ERP Philippe Badou First Solar Andrea Wade Interphases Research Jenoptik Jetion Solar Loser Chemie Dr. Parlitzsch Maltha Eric Dirkx NEDO Junji Nishihata Poseidon Solar Venugopal Ramakrishnan Primestar Solar Inc PV CYCLE Jan Clyncke PV Recycling Recupyl Recylum Xavier Lantoinette Relux Relux Reling Marc Uphoff / Roland Pohl Resolar Projekt Revatech Angèle Abou'ou Saperatec Schott Solar Solar Frontier Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	Arena Technologies	Jean-Pierre Roignant		
Ecologic Bernard Reygnier Eco-Systèmes Richard Toffolet ERP Philippe Badou First Solar Andrea Wade Interphases Research Shalini Menezes Jenoptik Uwe Wagner Jetion Solar Michael Fessler Loser Chemie Dr.Parlitzsch Maltha Eric Dirkx NEDO Junji Nishihata Poseidon Solar Venugopal Ramakrishnan Primestar Solar Inc Chris Rathweg PV CYCLE Jan Clyncke PV Recycling Jennifer Woolwich Recupyl Farouk Tedjar Recylum Xavier Lantoinette Relux Clas Ötting Reiling Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Angèle Abou'ou Saperatec Sebastian Kernbaum Schott Solar Erkart Döring SGS Minerals Alex Mezei Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat		Jean-Pierre Palier		
Eco-Systèmes Richard Toffolet ERP Philippe Badou First Solar Andrea Wade Interphases Research Shalini Menezes Jenoptik Uwe Wagner Jetion Solar Michael Fessler Loser Chemie Dr.Parlitzsch Maltha Eric Dirkx NEDO Junji Nishihata Poseidon Solar Venugopal Ramakrishnan Primestar Solar Inc Chris Rathweg PV CYCLE Jan Clyncke PV Recycling Jennifer Woolwich Recupyl Farouk Tedjar Recylum Xavier Lantoinette Relux Clas Ötting Reiling Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Angèle Abou'ou Saperatec Sebastian Kernbaum Schott Solar Erkart Döring SGS Minerals Alex Mezei Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	Drinkard Metalox	M. Drinkard		
ERP Philippe Badou First Solar Andrea Wade Interphases Research Shalini Menezes Jenoptik Uwe Wagner Jetion Solar Michael Fessler Loser Chemie Dr. Parlitzsch Maltha Eric Dirkx NEDO Junji Nishihata Poseidon Solar Venugopal Ramakrishnan Primestar Solar Inc Chris Rathweg PV CYCLE Jan Clyncke PV Recycling Jennifer Woolwich Recupyl Farouk Tedjar Recylum Xavier Lantoinette Relux Clas Ötting Reiling Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Angèle Abou'ou Saperatec Sebastian Kernbaum Schott Solar Erkart Döring SGS Minerals Alex Mezei Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	Ecologic	Bernard Reygnier		
First Solar Interphases Research Jenoptik Uwe Wagner Jetion Solar Michael Fessler Loser Chemie Dr.Parlitzsch Maltha Eric Dirkx NEDO Junji Nishihata Poseidon Solar Venugopal Ramakrishnan Primestar Solar Inc Chris Rathweg PV CYCLE Jan Clyncke PV Recycling Jennifer Woolwich Recupyl Farouk Tedjar Recylum Xavier Lantoinette Relux Clas Ötting Reiling Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Angèle Abou'ou Saperatec Sebastian Kernbaum Schott Solar SGS Minerals Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	Eco-Systèmes	Richard Toffolet		
Interphases Research Jenoptik Uwe Wagner Jetion Solar Michael Fessler Loser Chemie Dr.Parlitzsch Maltha Eric Dirkx NEDO Junji Nishihata Poseidon Solar Venugopal Ramakrishnan Primestar Solar Inc Chris Rathweg PV CYCLE Jan Clyncke PV Recycling Jennifer Woolwich Recupyl Farouk Tedjar Recylum Xavier Lantoinette Relux Clas Ötting Reiling Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Angèle Abou'ou Saperatec Schott Solar Schott Solar Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	ERP	Philippe Badou		
Jenoptik Uwe Wagner Jetion Solar Michael Fessler Loser Chemie Dr.Parlitzsch Maltha Eric Dirkx NEDO Junji Nishihata Poseidon Solar Venugopal Ramakrishnan Primestar Solar Inc Chris Rathweg PV CYCLE Jan Clyncke PV Recycling Jennifer Woolwich Recupyl Farouk Tedjar Recylum Xavier Lantoinette Relux Clas Ötting Reiling Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Angèle Abou'ou Saperatec Sebastian Kernbaum Schott Solar Erkart Döring SGS Minerals Alex Mezei Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	First Solar	Andrea Wade		
Jetion Solar Loser Chemie Dr.Parlitzsch Maltha Eric Dirkx NEDO Junji Nishihata Poseidon Solar Venugopal Ramakrishnan Primestar Solar Inc Chris Rathweg PV CYCLE Jan Clyncke PV Recycling Jennifer Woolwich Recupyl Farouk Tedjar Recylum Xavier Lantoinette Relux Clas Ötting Reiling Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Angèle Abou'ou Saperatec Sebastian Kernbaum Schott Solar Erkart Döring SGS Minerals Alex Mezei Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Targray Jack Bardakjian Tevali Denis Duyrat	Interphases Research	Shalini Menezes		
Loser Chemie Maltha Eric Dirkx NEDO Junji Nishihata Poseidon Solar Venugopal Ramakrishnan Primestar Solar Inc Chris Rathweg PV CYCLE Jan Clyncke PV Recycling Jennifer Woolwich Recupyl Farouk Tedjar Recylum Xavier Lantoinette Relux Clas Ötting Reiling Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Angèle Abou'ou Saperatec Sebastian Kernbaum Schott Solar Erkart Döring SGS Minerals Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat				
Maltha Eric Dirkx NEDO Junji Nishihata Poseidon Solar Venugopal Ramakrishnan Primestar Solar Inc Chris Rathweg PV CYCLE Jan Clyncke PV Recycling Jennifer Woolwich Recupyl Farouk Tedjar Recylum Xavier Lantoinette Relux Clas Ötting Reiling Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Angèle Abou'ou Saperatec Sebastian Kernbaum Schott Solar Erkart Döring SGS Minerals Alex Mezei Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	Jetion Solar	Michael Fessler		
NEDO Junji Nishihata Poseidon Solar Venugopal Ramakrishnan Primestar Solar Inc Chris Rathweg PV CYCLE Jan Clyncke PV Recycling Recupyl Recupyl Recylum Recylum Relux Clas Ötting Reiling Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Angèle Abou'ou Saperatec Sebastian Kernbaum Schott Solar Erkart Döring SGS Minerals Solar Cycle Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali	Loser Chemie	Dr.Parlitzsch		
Poseidon Solar Primestar Solar Inc Chris Rathweg PV CYCLE DV Recycling PV Recycling Farouk Tedjar Recylum Recylum Reiling Reiling Resolar Projekt Revatech Saperatec Schott Solar SCS Minerals Solar Cycle Solar Frontier Sunvie Targray Tevali PV Recycling Jan Clyncke Jen Clyncke Jan	Maltha	Eric Dirkx		
Primestar Solar Inc PV CYCLE PV Recycling Jennifer Woolwich Recupyl Recylum Recylum Relux Clas Ötting Reiling Reiling Resolar Projekt Revatech Saperatec Schott Solar Schott Solar Solar Cycle Solar Frontier Sunvie Targray Tevali Denis Duyrat		Junji Nishihata		
PV CYCLE PV Recycling Secupyl Recupyl Recylum Savier Lantoinette Clas Ötting Reiling Reiling Resolar Projekt Revatech Saperatec Schott Solar SGS Minerals Solar Cycle Solar Frontier Sunvie Targray Tevali Parouk Tedjar Axvier Lantoinette Clas Ötting Marc Uphoff / Roland Pohl Beate Kummer Angèle Abou'ou Sebastian Kernbaum Erkart Döring Alex Mezei Karsten Wambach M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Denis Duyrat	Poseidon Solar	Venugopal Ramakrishnan		
PV Recycling Recupyl Recylum Recylum Xavier Lantoinette Relux Clas Ötting Reiling Resolar Projekt Revatech Saperatec Schott Solar SCS Minerals Solar Cycle Solar Frontier Sunvie Targray Tevali Parouk Tedjar Farouk Tedjar Ravolwich Revolwich Resolar Cycle Sebastian Jennifer Woolwich Revolwich Revolwich Revolwich Revolwich Revolwich Revolwich Revolwich Resolar Projekt Beate Kummer Angèle Abou'ou Sebastian Kernbaum Erkart Döring Alex Mezei Karsten Wambach M. Roluf Sunvie Pierre Morane Jack Bardakjian Denis Duyrat	Primestar Solar Inc	Chris Rathweg		
Recupyl Farouk Tedjar Recylum Xavier Lantoinette Relux Clas Ötting Reiling Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Angèle Abou'ou Saperatec Sebastian Kernbaum Schott Solar Erkart Döring SGS Minerals Alex Mezei Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	PV CYCLE	Jan Clyncke		
Recylum Relux Clas Ötting Reiling Marc Uphoff / Roland Pohl Resolar Projekt Revatech Saperatec Schott Solar SGS Minerals Solar Cycle Solar Frontier Sunvie Targray Tevali Relux Clas Ötting Marc Uphoff / Roland Pohl Beate Kummer Angèle Abou'ou Sebastian Kernbaum Erkart Döring Karsten Döring Karsten Wambach M. Roluf Sunvie Pierre Morane Jack Bardakjian Denis Duyrat	PV Recycling	Jennifer Woolwich		
Relux Clas Ötting Reiling Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Angèle Abou'ou Saperatec Sebastian Kernbaum Schott Solar Erkart Döring SGS Minerals Alex Mezei Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	Recupyl	Farouk Tedjar		
Reiling Marc Uphoff / Roland Pohl Resolar Projekt Beate Kummer Revatech Angèle Abou'ou Saperatec Sebastian Kernbaum Schott Solar Erkart Döring SGS Minerals Alex Mezei Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	Recylum	Xavier Lantoinette		
Resolar Projekt Revatech Saperatec Schott Solar SGS Minerals Solar Cycle Solar Frontier Sunvie Targray Tevali Beate Kummer Angèle Abou'ou Sebastian Kernbaum Erkart Döring Alex Mezei Karsten Wambach M. Roluf Pierre Morane Jack Bardakjian Denis Duyrat	Relux			
Revatech Angèle Abou'ou Saperatec Sebastian Kernbaum Schott Solar Erkart Döring SGS Minerals Alex Mezei Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	Reiling	Marc Uphoff / Roland Pohl		
SaperatecSebastian KernbaumSchott SolarErkart DöringSGS MineralsAlex MezeiSolar CycleKarsten WambachSolar FrontierM. RolufSunviePierre MoraneTargrayJack BardakjianTevaliDenis Duyrat	Resolar Projekt	Beate Kummer		
Schott Solar Erkart Döring SGS Minerals Alex Mezei Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	Revatech	Angèle Abou'ou		
SGS Minerals Solar Cycle Solar Frontier Sunvie Targray Tevali Alex Mezei Karsten Wambach M. Roluf Pierre Morane Jack Bardakjian Denis Duyrat	Saperatec	Sebastian Kernbaum		
Solar Cycle Karsten Wambach Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	Schott Solar			
Solar Frontier M. Roluf Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat	SGS Minerals	Alex Mezei		
Sunvie Pierre Morane Targray Jack Bardakjian Tevali Denis Duyrat				
TargrayJack BardakjianTevaliDenis Duyrat	Solar Frontier	M. Roluf		
Tevali Denis Duyrat	Sunvie	Pierre Morane		
201110 Dayrat				
Producteurs varies au Salon Be+ - ENR, Paris 2012	1000			
	Producteurs varies au Salon Be-	ENR, Paris 2012		

Bibliographie

- [1] www.photovoltaique.info. Photovoltaique Info.
- [2] Okopol, "Study on the development of a take-back and recovery system for photovoltaic products," November 2007.
- [3] BMU, EPIA and BSW Solar, "Study on the devlopment of a take back and recovery system for photovoltaic products," 2007.
- [4] SVTC, "Toward a Just and Sustainable Solar Energy Industry," 2009.
- [5] V.M. Fthenakis, National PV EHS Assistance Center, BNL, *Overview of potential hazards*. New York, Etats-Unis: BNL, 2003.
- [6] Wuppertal Institute, "Appraisal of Laboratory Analyses conducted on CdTe Photovoltaic Modules," Août 2010.
- [7] UNEP Öko-Institut e.V., "Critical metals for future sustainable technologies and their recycling potential," 2009.
- [8] Wolfgang Bergera, Franz Georg, Simona, Karin Weimanna, Erik A. Alsema, *A novel approach for the recycling of thin film photovoltaic modules.*, 2010.
- [9] SVTC Ph.D.Mulvaney, "Just and Sustainable PV Recycling," in *Envisioning Sustainable Solar Technology, Forum on Solar Recycling*, Palo Alto, 2011.
- [10] Energy Materials Research Center, Korea Research Institute of Chemical Technology and Department of Chemistry, Chungam National University Sukmin Kang, Sungyeol Yoo, Jina Lee, Bonghyun Boo, Hojin Ryu, "Experimental investigations for recycling of silicon and glass from waste photovoltaic modules," *Elsevier Renewable Energy*, no. Renewable Energy 47 (2012) 152 -159, Avril 2012.
- [11] ENEA Consulting, "Interview de Jean-Pierre Roignant Arena Technologies," Compte rendu d'interview 2012.
- [12] Lifeng Zhang, Arjan Ciftja, Recycling of solar cell silicon scraps through filtration Part one: Experimental Investigation, 92200814501461st ed. Missouri, USA: Department of Materials Science and Engineering, Missouri University of Science and Technology, 2008.
- [13] Solar World Karsten Wambach, "A Voluntary Take Back Scheme and Industrial Recycling of Photovoltaic Modules," 2009.
- [14] IEA (International Energy Agency), "PVPS Annual Program 2010," *Photovoltaic Power Systems Program*, 2010.
- [15] EPIA, "Global market outlook for photovoltaics until 2015 actualisé avec les données du Global market outlook for photovoltaics until 2016," Mai 2011 2012.
- [16] ENEA Consulting, "Interview de Yvonnick Durand ADEME," Compte-Rendu d'interview 2012.
- [17] IEA PVPS (International Energy Agency, Photovoltaic Power Systems), "Trends in photovoltaic application Survey reports of selected IEA countries between 1992 and 2000," Survey 2011.
- [18] Eurobserver, "Baromètre Photovoltaïque," *Systèmes solaires, le journal photovoltaïque*, no. N°5, Avril 2011.
- [19] EEA (Europeean Environment Agency), "Renewable Energy Projections as Published in the National Renewable Energy Action Plans of the European Member States," ECN-E--10-069 2011.
- [20] EPIA Setfor2020, A.El.Gammal, Solar PV Mainstream energy source by 2020, www.setfor2020.eu, Ed., 2009.
- [21] BBH Dörte Fouquet, "Overview on the National Renewable EnergyActions plans of the EU Member States with focus on PV," Bruxelle, REPAP March 2011 2011.
- [22] Navigant Consulting Paula Mints, "Where are we going and how will we get there PV Production capacities and the PV Value Chain," in *Presentation at the 2nd EPIA International Conference on PV Investments*, Franckfort, Allemagne, Fevrier 2008.
- [23] Charline Froitier Tsinghua University, "Technology assessment of recycling end of life photovoltaic solar panels: a prospective study," Tsinghua University, Rapport de thèse 2010.
- [24] BIO Intelligence Service, "Etude du potentiel de recyclage de certain métaux rares Partie 2," ADEME, 2010.
- [25] Umweltkommunikation GmbH Beate Kummer, "Research Project RESOLAR," in EPIA Conference, Madrid, 2011.

- [26] ADEME, "Indicateurs de suivi de la filière des Déchets d'Equipements Electriques et Electroniques ménagers," 2011.
- [27] ENEA Consulting, "Interview de Bertrand Reygnier Eco-logic," Compte-rendu d'interview 2012.
- [28] Parlement Européen et Conseil de l'Union Européenne, *Directive 2008/98/CE du parlement européen et du conseil relative aux déchets et abrogeant certaines directives*, 3123rd ed., 19 Novembre 2008.
- [29] Parlement et Conseil Européen, *Directive 2008/34/CE du parlement européen et du conseil relative aux déchets d'équipements électriques et électroniques.*, 11 Mars 2008.
- [30] UBA UmweltBundesAmt, "ElektroG Transcription Allemande de la directive DEEE," vol. http://www.umweltbundesamt.de/abfallwirtschaft-e/elektrog.
- [31] Export.gov.com, "RoHS Restriction of Hazardous Substances Directive," vol. http://export.gov/europeanunion/weeerohs/rohsinformation/index.asp.
- [32] Ministère de l'Ecologie, du Développement durable et de l'Energie Samuel Brunet, "REACH Déchet," *Direction de la prévention des pollutions et des risques*, no. CD2E, 28 Janvier 2009.
- [33] Patrick Levy (Cabinet Patrick Levy Consulting) et Yvon Martinet (Cabinet Savin Martinet Associés), "Statut de déchet produit / REACH et le recyclage," *PRORECYCLAGE*, vol. http://www.prorecyclage.com/sante-securite/reach-et-le-recyclage.html.
- [34] SGS Taïwan Ltd, "First Product Catalogue of China WEEE Published," no. http://www.tw.sgs.com/sgssites/rohs/news/first-product-catalogue-of-china-weee-published.htm, 2010.
- [35] GTZ C.Hicks et R.Dietmar, *The recycling and disposal of electrical and electronic waste in China legislative and market response*, 252005459471st ed.: Elsevier, April 2005 2005.
- [36] ENEA Consulting, "Interview de Jean-Pierre Palier CERES," 2012.
- [37] Ministry of Environment and Forest of India, "Notification on e-waste Management and Handling Rules,", 2011.
- [38] Relux Umwelt & DELA Clas Oetting, "Recycling experiences from other sectors: Fluorescent Lamp Recycling," in 1st International Conference on PV Module Recycling, Berlin, 2010.
- [39] ENEA Consulting, "Interview de Dr.Wambach Solar Cycle GmbH," Compte rendu d'interview 2012.
- [40] T Doi et al., "Experimental Study on PV Module Recycling with Organic Solvent Method," in *11th PVSEC*, Sapporo, 1999.
- [41] K.Wambach, "Recycling of PV modules," in 2nd WCPEC, 1998.
- [42] T.Bruton et al., "Re-cycling of High Value, High Energy Content Components of Silicon PV Modules," in 12th EU-PVSEC, 1994.
- [43] Doi, *Method for separating constituent members of solar cell module*, 200401935820050658521th ed.: National Institute of Advanced Industrial Science and Technology, 2005.
- [44] Antec Solar GmbH (Campo, Manuel Diequez), *Process for recycling CdTe/CdS thin film solar cell modules*, 2000047343rd ed., 2003.
- [45] Calyxo Christoph Mühlenbeck, "FAQ Calyxo CdTe Photovoltaic modules: Product and Technology awareness for our stakeholders," Calyxo Département Développement Durable, FAQ pour les clients de Calyxo http://www.calyxo.com/medien_cdte/nachhaltigkeit/pas11050157en.pdf, 2012.
- [46] Calyxo John Bohland et Andreas Wade, *Photovoltaic Modules Recycling*, 20100197671st ed.: WIPO, 2010.
- [47] Ewa Klugmann-Radziemska et Piotr Ostrowski, *Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules*, 35201017511759th ed. Gdansk, Pologne: Gdansk University of Technology, Chemical Faculty, 2009.
- [48] Shalini Menezes, InterPhases Research, "Electrochemical approach for removal, separation and retrieval of CdTe and CdS films from PV module waste," *Thin Solid Films, Elservier*, no. 387 (2001) 175-178, 2001.
- [49] Frank Schmieder JENOPTIK GmbH Uwe Wagner, "Method for recycling thin-film solar cell modules," US PATENT US2009308535, 2009.
- [50] Cleantech Investing, Eric Wesoff, "Solar Startups Part Four: Thin Film," no. http://www.greentechmedia.com/green-light/post/150-solar-start-ups-part-4-thin-film-813/, Décembre 2008.

- [51] ENEA Consulting, "Interview de Uwe Wagner Jenoptik," Compte-Rendu d'interview 2012.
- [52] Moskowitz, V. M. Fthenakis and P.D., BNL, *The Value and Feasibility of Proactive Recycling.*, 2008.
- [53] Primestar Solar Inc Christopher Rathweg, "System and process for recovery of CdTe from system component used in the manufacture of photovoltaic modules," US PATENT, 2009.
- [54] Lieten K, Bruton T, Declerck K, Szlufcik J, de Moor H, et al Frisson L, *Recent Improvements In Industrial PV Module Recycling*. Belgique, 2000.
- [55] ENEA Consulting, "Interview de Stéphane Maroni et Nicholas Audet 5N Plus," Compte-rendu d'interview 2012.
- [56] 5N Plus Massimo Dattilo, "CIGS PV Modules Recycling Technology Status," in 2nd International Conference on PV Module Recycling, Madrid, Spain, 2011.
- [57] CP Solar Charline Froitier, *Usine de Recyclage PV Plan, fonctionnement, équipement et coûts.*, 2010.
- [58] SGS Minerals A.Mezei, Technical feasibility aspects related to the hydrometallurgical recycling of pay metals from thin film photovoltaics., 2011.
- [59] SGS Minerals Services A.Mezei, *Hydrometallurgical recycling of the semi-conductor material from photovoltaic materials Part One: Leaching process.* USA, 2008.
- [60] SGS Minerals Services A.Mezei, Hydrometallurgical recycling of the semiconductor material from photovoltaic materials Part two: Metal Recovery., 2008.
- [61] ENEA Consulting, "Interview de Dr.Parlitzsch Loser Chemie," Compte-rendu d'interview 2012.
- [62] Loser Chemie Dr.Parlitzsch, Waste recovery for metals with strategic importance technical, economic and legal condition., 2011.
- [63] Maltha Erik Dirkx, "Laminated Glass Recycling adapted to PV modules recycling, Belgium,", 2010.
- [64] ENEA Consulting, "Interview de Jennifer Woolwich PV Recycling," Compte rendu d'interview 2012.
- [65] ENEA Consulting, "Interview de Farouk Tedjar Recupyl," Compte rendu d'interview 2012.
- [66] Reiling, "Recycled flatglass Qualities and applications," in *Recycling of flat glass*, Berlin, 2010, p. 13.
- [67] ENEA Consulting, "Interview de Roland Pohl Reiling," Compte-rendu d'interview 2012.
- [68] ENEA Consulting, "Interview de Stephan Kernbaum Saperatec," Compte rendu d'interview 2012.
- [69] Solar World Karsten Wambach, "Recycling of PV modules,", Berlin, 2010.
- [70] ENEA Consulting, "Interview de Jack Bardakjian Targray," 2012.
- [71] ENEA Consulting, "Interview de Jan Clyncke PV CYCLE," Compte-rendu d'interview 2012.
- [72] Propos recueillis par Eric Leysens, "Photovoltaïque: « le recyclage est un grand défi»," *Le moniteur*, Août 2011.
- [73] ENEA Consulting, "Interview de Stéphane Duponchel APESI," Compte rendu d'interview 2012.
- [74] First Solar Lisa Krueger, "Overview of First Solar's Module Collection and Recycling Program," 2009.
- [75] Solar World K.Wambach, *The Photovoltaic Industry Extended Producer Extended Responsability for New Energy Systems.*, Septembre 2011.
- [76] ENEA Consulting, "Interview de Junji Nishihata Solar Frontier," Compte-rendu d'interview 2012.
- [77] ENEA Consulting, "Interview de Eric Dirx Maltha," Compte rendu d'interview 2012.
- [78] Wang Fthenakis, "System and Method for Separating tellurium from cadmium waste," US PATENT US 2010/0189612 A1, 2010.
- [79] EU Life, "RESOLVED Recovery of Solar Valuable Materials, Enrichment and Decontamination," European Union, Rapport de projet LIFE04 ENV/D/000047, 2007.
- [80] SVTC, "Solar Company Survey Cells manufacturer," Score Card 2010.
- [81] A.Dong, L.Zhang, L.Damoah, Missouri University of Technology, "Beneficial and Technological Analysis for the Recycling of Solar Grade Silicon Wastes," *Energy Conservation*, 2011.
- [82] J.M Pearce N.C McDonald, "Producer responsibility and recycling solar photovoltaic modules," School of Environmental Studies, Queen's University, Kingston, Canada, Energy Policy 38 (2010) 7041–7047, 2010.

- [83]
- [84] Erica Gies, "Solar Panel Recycling Gears Up," *thedailygreen.com*, no. http://www.thedailygreen.com/environmental-news/latest/solar-panel-recycling-460810?click=main_sr, 2010.
- [85] EPIA, "Global market outlook for photovoltaics until 2015," Mai 2011.
- [86] Karsten Wambach ECN Mariskade Wild-Scholten, "Implications of EU environmental legislation for PV," in *20th EU-PVSEC*, Barcelone, 2005.
- [87] Andreas Breyer, "PV Recycling: The need to be double-green," *Solar Novus Today*, Octobre 2011.
- [88] eHow Contributor David M. Oancea, "Companies That Recycle Solar Panels," http://www.ehow.com/list_7443829_companies-recycle-solar-panels.html, 2012.